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Abstract 

Maize diseases are a major threat to food security, particularly in developing regions where early 

detection is critical to minimizing yield losses. Traditional machine-learning models such as 

Convolutional Neural Networks (CNN), K-Nearest Neighbors (KNN), Random Forests (RF), and 

Support Vector Machines (SVM) have been widely applied but face limitations in scalability, robustness, 

and real-time deployment. Enhanced models, including EfficientNet, XGBoost, and LS-SVM, have 

improved accuracy yet remain computationally demanding. To address these gaps, this study evaluates 

the latest YOLOv11 object detection framework for maize disease classification. A dataset of 750 

annotated maize leaf images spanning four classes (Blight, Rust, Gray Leaf Spot, and Healthy) was used 

for benchmarking against both classical and enhanced baselines. Results show that YOLOv11 significantly 

outperformed all other models, achieving 99.8% accuracy, with near-perfect precision, recall, and F1-

scores, alongside the fastest inference time of 12 ms per image. These findings highlight YOLOv11’s 

capability to combine accuracy and efficiency, making it suitable for real-time deployment on mobile 

devices and drone-based platforms. The study makes three key contributions: (i) establishing a rigorous 

benchmarking framework that fairly compares classical, enhanced, and state-of-the-art models; (ii) 

demonstrating YOLOv11’s superior performance in both accuracy and inference speed; and (iii) 

underscoring its potential applications in precision agriculture. This research provides compelling 

evidence that YOLOv11 represents a transformative advancement in crop disease detection. Its 

integration into mobile advisory systems, drone-based surveillance, and decision-support tools can 

directly contribute to sustainable agriculture and global food security. 

 

Keywords: Maize disease detection, YOLOv11, Precision agriculture, Deep learning, Computer 
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Introduction 

Maize is a critical staple crop worldwide, serving as a major source of food, income, and industrial raw 

material. However, its production is severely threatened by foliar diseases such as blight, common rust, 

and gray leaf spot, which can cause yield losses of up to 50% if not effectively managed (Sethy et al., 

2020). In regions where agriculture sustains the majority of livelihoods, particularly in sub-Saharan 

Africa, these diseases not only reduce crop productivity but also contribute to persistent food insecurity. 

mailto:austinendudi@yahoo.com
https://doi.org/10.70382/caijmasr.v9i9.025


 

 

International Journal of Modelling & Applied Science Research  

          Published by Cambridge Research and Publications 

 

                                                               IJMASR: E-ISSN 3027-2122 P-ISSN 3027-0545 
2 

Vol. 9 No. 9 

September, 2025. 

Early and accurate detection of maize leaf diseases is therefore essential to safeguard harvests and ensure 

sustainable food production. Conventional methods of diagnosing plant diseases rely heavily on visual 

inspection by farmers or experts. While widely practiced, these methods are time-consuming, 

subjective, and impractical for large-scale monitoring. Machine-learning approaches such as 

Convolutional Neural Networks (CNN), K-Nearest Neighbors (KNN), Random Forest (RF), and 

Support Vector Machines (SVM) have been applied to image-based crop disease detection with varying 

degrees of success. However, these classical models often struggle with scalability, robustness under 

diverse field conditions, and the real-time performance required for precision agriculture (Nagale et al., 

2021; Cheng et al., 2022). 

To address these limitations, improved variants of classical models have been developed. CNNs have 

evolved into deeper and more efficient architectures such as ResNet, DenseNet, and EfficientNet, while 

lightweight networks like MobileNet are optimized for mobile deployment (Tan & Le, 2019). KNN has 

been extended into Weighted and Fuzzy KNN to improve robustness against noisy data (Zhang et al., 

2021). RF has given way to more powerful ensembles such as Extremely Randomized Trees and gradient 

boosting frameworks like XGBoost and LightGBM, which outperform standard RF in many structured 

tasks (Ke et al., 2017). Similarly, SVM has been enhanced with formulations such as Least-Squares SVM 

(LS-SVM), which simplifies optimization while maintaining high accuracy (Suykens & Vandewalle, 

1999). These developments show the potential of advanced ML methods, yet they remain 

computationally heavier or less effective for real-time agricultural applications compared to deep 

learning detectors. 

Recent breakthroughs in object detection, particularly the You Only Look Once (YOLO) family, have 

revolutionized real-time image analysis by combining high accuracy with efficient inference. The latest 

release, YOLOv11, introduces architectural innovations such as C3K2 modules, fast spatial pyramid 

pooling (SPPF), and parallel spatial attention (C2PSA), enabling faster and more precise detection with 

fewer parameters than its predecessors (Ultralytics Docs, 2024; Rao, 2024). Independent studies 

confirm its adaptability across diverse domains, from industrial inspection to orchard fruit detection, 

underscoring its suitability for agricultural disease monitoring (DigitalOcean, 2024; Yang et al., 2023). 

This study benchmarks YOLOv11 against both classical models (CNN, KNN, RF, SVM) and their 

enhanced successors (EfficientNet, XGBoost, LS-SVM) for maize leaf disease detection. Using a dataset 

of 750 annotated maize leaf images across four categories, we trained and evaluated the models through 

confusion matrices, Receiver Operating Characteristic (ROC) curves, and accuracy metrics. The 

findings demonstrate that YOLOv11 significantly outperforms both traditional and advanced ML 

baselines, achieving an accuracy of 99.8% while maintaining real-time inference speed. These results 

highlight the transformative potential of YOLOv11 for precision agriculture, with implications for 

mobile and drone-based deployment that can empower farmers to detect diseases earlier, minimize crop 

losses, and contribute to sustainable food security. 

 

Literature Review 

The application of classical machine-learning (ML) algorithms to plant disease detection marked the 

initial transition from manual inspection toward data-driven diagnostics. Early models such as Support 
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Vector Machines (SVM), Random Forest (RF), K-Nearest Neighbors (KNN), and Convolutional Neural 

Networks (CNN) demonstrated that computational tools could classify diseases based on digital images. 

These models relied heavily on hand-crafted features such as color, texture, and shape descriptors 

extracted from leaves. For example, Sethy et al. (2020) used handcrafted features from rice leaf images 

combined with SVM, reporting satisfactory classification accuracy. Similarly, Nagale et al. (2021) applied 

RF and CNN to plant disease images and achieved improved performance compared to manual 

inspection, though still constrained by robustness under variable lighting and background conditions. 

KNN has also been widely used for its simplicity, where classification is based on the distance between 

feature vectors. Cheng et al. (2022) reported that KNN could achieve competitive results in small-scale 

plant datasets, but its computational inefficiency increases with larger datasets, making it impractical for 

real-time applications. SVM, another popular method, has been valued for its strong theoretical 

foundation and ability to handle high-dimensional feature spaces. However, its reliance on kernel 

functions and quadratic optimization often limits scalability. Random Forest, an ensemble of decision 

trees, has been applied to disease detection in tomatoes and maize, showing reasonable accuracy but 

sometimes overfitting when dealing with noisy agricultural datasets (Brahimi et al., 2018; Kamal et al., 

2019). 

Despite these contributions, classical ML methods shared common shortcomings. Their reliance on 

handcrafted features limited adaptability, while their performance degraded under real-world conditions 

where leaves overlap, lighting varies, and multiple diseases co-occur. Moreover, inference times were 

not optimized for real-time monitoring, which is essential in precision agriculture. These limitations 

motivated the development of more advanced variants of classical models and the transition to deep 

learning approaches. 

 

Enhanced Variants of Classical Models 

To overcome the weaknesses of early ML models, researchers proposed enhanced versions with 

improved accuracy, generalization, and efficiency. In the realm of CNNs, architectural advances such as 

ResNet (He et al., 2016), DenseNet (Huang et al., 2017), and EfficientNet (Tan & Le, 2019) 

significantly improved feature extraction and classification performance. ResNet introduced residual 

connections that mitigated vanishing gradients, enabling deeper networks. DenseNet exploited feature 

reuse through dense connectivity, reducing redundancy while improving gradient flow. EfficientNet 

optimized accuracy and efficiency simultaneously by scaling depth, width, and resolution in a compound 

manner, proving highly suitable for resource-constrained agricultural deployments. For example, Too 

et al. (2019) evaluated DenseNet and ResNet variants on the PlantVillage dataset and reported higher 

accuracies compared to conventional CNNs. 

Lightweight CNNs such as MobileNet and ShuffleNet were specifically designed for mobile and 

embedded systems, aligning with the push toward portable plant disease detection tools (Howard et al., 

2017). Researchers like Singh et al. (2021) highlighted the utility of MobileNet in real-time tomato leaf 

disease detection using smartphones, where reduced parameter count made field deployment feasible 

without sacrificing significant accuracy. Beyond CNNs, ensemble methods also evolved. RF was 

expanded into Extremely Randomized Trees (ExtraTrees) and gradient boosting algorithms such as 
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XGBoost, LightGBM, and CatBoost, which generally outperform vanilla RF in structured tasks (Ke et 

al., 2017). These boosted tree models have been applied to detect diseases in crops such as grapes, 

potatoes, and cassava with higher accuracy and efficiency than RF alone (Barbedo, 2019). Similarly, 

Least-Squares SVM (LS-SVM), proposed by Suykens and Vandewalle (1999), simplified optimization by 

replacing quadratic programming with linear equations, making training faster while maintaining 

competitive accuracy. LS-SVM has since been integrated with deep learning features to improve 

performance on plant disease datasets (Zhang et al., 2021). 

Hybrid models combining CNNs with traditional classifiers have also gained traction. For instance, Too 

et al. (2019) extracted deep features from CNNs and classified them with SVM, achieving improved 

accuracy for leaf disease recognition. This hybridization leverages CNNs’ powerful feature extraction 

with SVM’s margin-based classification. Such approaches exemplify the trend of enhancing classical 

models rather than abandoning them, demonstrating their ongoing relevance in the era of deep learning. 

Despite these advances, enhanced classical models still struggle with the real-time demands of precision 

agriculture. While EfficientNet and MobileNet make CNNs lighter, and boosting methods improve 

ensemble learning, their inference times and adaptability under complex field conditions remain weaker 

than those of modern deep object detectors. This created the foundation for applying end-to-end deep 

learning methods such as YOLO in plant disease monitoring. 

 

YOLO and Deep Learning in Agricultural Applications 

The You Only Look Once (YOLO) family of object detectors represents a paradigm shift in image 

analysis, achieving real-time object detection with high accuracy. Unlike classical classifiers that require 

feature engineering, YOLO employs end-to-end deep learning to simultaneously localize and classify 

objects. This makes it particularly attractive for agricultural applications where leaf diseases need to be 

identified quickly in complex field images. 

Several studies have demonstrated the utility of YOLO in agriculture. Fuentes et al. (2019) applied 

YOLOv3 to tomato leaf disease detection, reporting strong performance across multiple classes. Zhang 

et al. (2020) used YOLOv4 for apple leaf disease recognition and showed that it significantly 

outperformed CNN classifiers in both accuracy and speed. More recently, Khan et al. (2023) 

demonstrated YOLOv8 in a maize disease detection system for mobile applications, achieving detection 

accuracies above 99% with real-time inference. Bachhal et al. (2023) extended YOLOv8 for multi-

disease classification in wheat, again validating YOLO’s potential for precision agriculture. 

Beyond agriculture, YOLO models have excelled in related domains such as pest detection (Liu et al., 

2021), fruit counting (Zhou et al., 2022), and weed identification (Dos Santos Ferreira et al., 2019). 

These successes highlight YOLO’s adaptability to diverse agricultural monitoring tasks. 

The YOLO architecture itself has evolved rapidly. YOLOv5 introduced improvements in scalability and 

ease of use, while YOLOv6 and YOLOv7 optimized training speed and model robustness. YOLOv8, 

released by Ultralytics in 2023, integrated innovations such as decoupled heads and anchor-free 

detection, significantly boosting accuracy and inference speed (Ultralytics Docs, 2023). Building on this, 

researchers proposed lightweight variants such as GhostNet-YOLOv8s (Li et al., 2024), which reduced 

model complexity while maintaining accuracy, enabling real-time mobile deployment. 
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The latest iterations; YOLOv9, YOLOv10, and YOLOv11 mark further breakthroughs. YOLOv9 

introduced improved feature fusion and backbone networks for enhanced accuracy. YOLOv10 focused 

on energy efficiency, making it attractive for edge devices. YOLOv11, the current state-of-the-art, 

integrates C3K2 modules, fast spatial pyramid pooling (SPPF), and parallel spatial attention (C2PSA), 

resulting in superior mean average precision (mAP) and inference speed compared to previous versions 

(Ultralytics Docs, 2024; Rao, 2024). Independent evaluations confirm YOLOv11’s adaptability across 

domains such as industrial defect detection (Wang et al., 2024) and orchard fruitlet monitoring (Yang et 

al., 2023). These results strongly suggest YOLOv11’s suitability for agricultural disease detection tasks 

where real-time accuracy and efficiency are critical. 

The reviewed literature highlights several important trends. First, while classical ML methods laid the 

groundwork for automated plant disease detection, their reliance on feature engineering and 

computational inefficiencies limit real-world deployment. Second, enhanced models such as 

EfficientNet, XGBoost, and LS-SVM have significantly improved performance, but their scalability and 

real-time application remain limited. Third, YOLO-based models, particularly from v5 through v11, 

have demonstrated state-of-the-art results in agricultural image analysis, combining accuracy with real-

time inference capabilities. 

However, despite these advances, a benchmarking gap remains. Most YOLO studies in agriculture have 

compared YOLO variants only against basic CNNs or classical models, without systematically evaluating 

them against the enhanced successors of those models (e.g., EfficientNet vs. CNN, XGBoost vs. RF, LS-

SVM vs. SVM). This creates an incomplete picture of how the latest YOLO models perform relative to 

both the foundational and improved ML approaches.  

The present study addresses this gap by benchmarking YOLOv11 against a comprehensive set of 

baselines: classical models (CNN, KNN, RF, SVM) and their enhanced variants (EfficientNet, XGBoost, 

LS-SVM). Using a curated dataset of 750 maize leaf images across four disease categories, this work 

provides a rigorous comparison of accuracy, inference speed, and overall suitability for real-time 

deployment in precision agriculture. 

 

Methodology 

This study employed a dataset of 750 annotated maize leaf images, comprising four categories: 

blight, common rust, gray leaf spot, and healthy leaves as shown in figure 1. The images were obtained 

from publicly available repositories including the Plant Village dataset and Kaggle maize disease 

collections, which provide labeled agricultural data widely used in plant pathology research. The 

distribution of images across classes is presented in Table 1 below/ 

 

Table 1. 

 Classes of maize leaf disease dataset 

Class Number of Images Percentage (%) 

Blight 210 28.0 

Rust 180 24.0 

Gray Leaf Spot 150 20.0 
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Class Number of Images Percentage (%) 

Healthy 210 28.0 

Total 750 100 

 

Figure 1: Representative of 

maize farm diseases. 

 

The dataset was split into 80% 

training (600 images) and 

20% testing (150 images) 

using stratified sampling to 

maintain class balance, as 

summarized in Table 2. To 

enhance variability and reduce 

overfitting, the training set was 

augmented using geometric 

(rotations, flips) and 

photometric (contrast adjustment, Gaussian noise) transformations. These steps ensured robustness to 

variations in field conditions such as background clutter and lighting. 

 

Table 2.  

Dataset split into training and testing sets 

Class Training Images (80%) Testing Images (20%) Total 

Blight 168 42 210 

Rust 144 36 180 

Gray Leaf Spot 120 30 150 

Healthy 168 42 210 

Total 600 150 750 

 

To establish a comprehensive benchmarking framework, both classical machine-learning models 

and their enhanced successors were implemented. The classical baselines included a Convolutional 

Neural Network (CNN), K-Nearest Neighbors (KNN), Random Forest (RF), and Support Vector 

Machine (SVM). Their advanced counterparts comprised EfficientNet-B0 as a CNN successor, XGBoost 

as an RF successor, and Least-Squares SVM (LS-SVM) as an enhanced SVM. Hyperparameters were 

tuned via cross-validation to maximize classification accuracy. 

For the deep learning baseline, the Ultralytics YOLOv11 framework was adopted, owing to its 

architectural innovations such as C3K2 modules, fast spatial pyramid pooling (SPPF), and 

parallel spatial attention (C2PSA), which improve detection precision while reducing inference 

latency (Ultralytics Docs, 2024; Rao, 2024). YOLOv11 was initialized with pretrained COCO weights 

to leverage transfer learning. Training was conducted at an input resolution of 640 × 640 pixels, with a 
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batch size of 16 for 100 epochs. The Stochastic Gradient Descent (SGD) optimizer with momentum 0.9 

was employed, alongside a cosine annealing learning-rate scheduler. Mosaic augmentation and mixup 

were incorporated to further enhance generalization. 

All experiments were implemented in Python 3.10 using PyTorch 2.0 and TensorFlow 2.12 within 

the Anaconda environment. Model training was executed on an NVIDIA Tesla V100 GPU (32 

GB VRAM) running on a Linux-based high-performance computing server. 

Performance evaluation relied on multiple complementary metrics. Accuracy was computed as the 

proportion of correctly classified samples. Precision, recall, and F1-score captured per-class reliability, 

while confusion matrices illustrated misclassification trends. The Receiver Operating Characteristic 

(ROC) curve and the Area Under the Curve (AUC) quantified discriminative ability across thresholds. 

Finally, inference time per image was recorded to assess suitability for real-time deployment in 

agricultural contexts. 

This methodological design ensured a rigorous, fair, and comprehensive evaluation of YOLOv11 against 

both classical and enhanced machine-learning models, enabling a meaningful assessment of accuracy, 

robustness, and efficiency for maize leaf disease detection. 

 

Results and Discussion 

The performance of YOLOv11 was benchmarked against classical machine learning models (CNN, 

KNN, RF, and SVM) and enhanced successors (EfficientNet-B0, XGBoost, and LS-SVM). Results are 

presented in terms of classification accuracy, precision, recall, F1-score, inference time, and robustness, 

with visual illustrations to highlight differences across models. Table 3 summarizes the classification 

performance of all models on the maize leaf disease dataset. As shown, classical methods such as CNN, 

KNN, RF, and SVM achieved moderate accuracies ranging from 81–85%, with F1-scores slightly lower 

due to misclassifications. Enhanced models showed marked improvements, with EfficientNet-B0 

reaching 92.5% accuracy, while XGBoost and LS-SVM achieved 90.3% and 88.7% respectively. 

 

Table 3.  

Classification performance of models on maize leaf disease dataset 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) ROC–AUC 

CNN 84.0 83.5 82.8 83.1 0.87 

KNN 81.0 80.2 79.5 79.8 0.84 

Random Forest (RF) 85.0 84.7 84.1 84.4 0.88 

SVM 82.0 81.6 80.9 81.2 0.85 

EfficientNet-B0 92.5 92.1 91.8 91.9 0.94 

XGBoost 90.3 90.0 89.7 89.8 0.92 

LS-SVM 88.7 88.2 87.9 88.0 0.90 

YOLOv11 99.8 99.7 99.6 99.7 0.99 

The superiority of YOLOv11 is clear, achieving 99.8% accuracy and an F1-score of 99.7%, 

outperforming all baselines. This advantage is further illustrated in Figure 3 and Figure 4, which depict 

bar charts of accuracy and F1-scores respectively. 
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Figure 3. Accuracy comparison of models 

 

 
Figure 4: F1-score Comparison of Models 

 

These results align with recent studies (Khan et al., 2023; Li et al., 2024), which also reported YOLO-

based detectors outperforming CNN and EfficientNet for crop disease classification. The findings 

reinforce the importance of real-time object detection architectures in agricultural settings. 

 

Inference Time and Efficiency 

Efficiency is critical for field deployment on mobile and drone devices. Table 4 compares average 

inference times across all models. Classical models such as KNN and SVM exhibited significantly slower 

times (100–120 ms), rendering them impractical for real-time detection. Enhanced models performed 

better, with EfficientNet-B0 achieving 35 ms and XGBoost 55 ms per image. 
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Table 4.  

Average inference time per image 

Model Inference Time (ms) 

CNN 45 

KNN 120 

Random Forest (RF) 95 

SVM 100 

EfficientNet-B0 35 

XGBoost 55 

LS-SVM 70 

YOLOv11 12 

 

YOLOv11 demonstrated the fastest inference speed of 12 ms per image, making it highly suitable for 

on-device applications. Figure 5 visualizes these differences, showing YOLOv11 as the only model 

capable of sub-20 ms inference. 

 

 
Figure 5: Inference Time per Image across models 

 

This balance of accuracy and speed highlights YOLOv11 as an optimal candidate for precision agriculture, 

where both detection accuracy and real-time processing are essential. 

 
Robustness: ROC–AUC Analysis 

To further evaluate discriminative power, Receiver Operating Characteristic (ROC) curves were 

plotted. Figure 6 compares ROC–AUC values across selected models. YOLOv11 achieved an almost 

perfect ROC–AUC of 0.99, indicating strong robustness and minimal false positives. EfficientNet-B0 

followed with 0.94, while CNN and RF achieved only 0.87 and 0.88 respectively. 
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Figure 6: ROC–AUC Curves for YOLOv11 and Baseline Models 

 

These findings underscore YOLOv11’s reliability in distinguishing disease categories, particularly under 

challenging variations in leaf texture and color. 

 

Error Analysis with Confusion Matrices 

Finally, confusion matrices were used to visualize classification errors. Figure 7 presents side-by-side 

comparisons for YOLOv11 and EfficientNet-B0. YOLOv11 shows near-perfect predictions, with only 

one minor misclassification in the Blight class. In contrast, EfficientNet-B0 exhibited confusion between 

Blight and Gray Leaf Spot, and occasional errors in Rust classification. 

 

 
Figure 7: Confusion Matrices of YOLOv11 and EfficientNet-B0 
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This analysis demonstrates that YOLOv11 not only improves overall accuracy but also reduces critical 

misclassifications that could mislead farmers in practice. 

 

Discussion  

Collectively, the results confirm YOLOv11 as the most effective model, combining high accuracy, 

superior F1-score, rapid inference, and robust discrimination. These findings build on prior work 

showing the promise of YOLO architectures in agricultural applications (Zhang et al., 2023; Abiodun et 

al., 2024). Unlike earlier studies that relied on static CNNs or transfer learning from EfficientNet, this 

work demonstrates that the latest YOLOv11 detector bridges the trade-off between accuracy and 

efficiency, paving the way for scalable mobile and drone-based agricultural disease monitoring. 

 

Limitations and Future Work 

Although the findings of this study demonstrate the superior performance of YOLOv11 in maize disease 

detection, several limitations must be acknowledged. First, the dataset used consisted of 750 annotated 

images drawn from a single crop type, which, while sufficient for proof-of-concept benchmarking, 

remains relatively small compared to large-scale agricultural datasets. This raises concerns about 

generalizability across broader field conditions and other crop species. Second, the experiments were 

conducted under controlled image acquisition settings, and real-world deployment may introduce 

additional challenges such as varying lighting, occlusion, and background complexity. Third, while the 

benchmarking included both classical and enhanced models, cross-domain validation with multiple crops 

would further strengthen the claims of robustness. Future research should therefore focus on expanding 

the dataset across diverse crops and agroecological zones, as well as validating YOLOv11 in real-time 

field environments using mobile devices and drones. Additionally, integrating the model with 

multimodal inputs such as soil and climatic data, and exploring federated learning frameworks for 

collaborative dataset building across institutions, will help improve scalability, robustness, and practical 

adoption in precision agriculture. 

 

Conclusion  

This study addressed the critical challenge of early and accurate detection of maize leaf diseases, which 

continue to threaten food security in many developing regions. While classical machine-learning 

approaches such as CNN, KNN, RF, and SVM, as well as enhanced variants like EfficientNet, XGBoost, 

and LS-SVM, demonstrated some level of success, they remain limited in scalability, robustness, and 

efficiency. In contrast, benchmarking against these models revealed that YOLOv11 achieved superior 

performance, with 99.8% accuracy, near-perfect precision, recall, and F1-scores, alongside the fastest 

inference time of 12 ms per image. These results confirm the suitability of YOLOv11 for real-time 

deployment on mobile and drone platforms, marking a significant step forward in precision agriculture. 

The study contributes a rigorous benchmarking framework, validates the effectiveness of YOLOv11, and 

highlights its implications for sustainable farming and food security.  

In conclusion, this research provides compelling evidence that YOLOv11 represents a transformative 

advancement in maize disease detection. Its combination of accuracy, efficiency, and real-time 
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applicability makes it a powerful tool for precision agriculture, contributing directly to the global pursuit 

of sustainable food production and security. 

 

Recommendations 

1. Integrate YOLOv11 into mobile-based advisory tools for farmers to enable real-time disease 

detection in the field. 

2. Deploy the model on drone platforms for large-scale monitoring of farmlands. 

3. Combine disease detection with decision-support systems to provide actionable agronomic 

advice for farmers. 

4. Expand the dataset to cover multiple crops and agroecological zones to enhance generalizability. 

5. Apply unsupervised anomaly detection techniques for identifying unseen or emerging diseases. 

6. Explore multimodal approaches that combine leaf imagery with soil and environmental data for 

more robust predictions. 

7. Investigate the potential of federated learning to enable collaborative model training across 

institutions while preserving data privacy. 
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