

# ESTABLISHING CLOUD-BASED CAB TRANSPORTATION SYSTEM IN NIGERIA

# \*ASEMEWALEN, NELSON OSEZELE; & \*\*NWAFOR, FAITH OLUCHUKWU

\*Department of Computer Science, Federal College of

Education, Katsina, Katsina State, Nigeria. \*\*Department of Computer Science,
Tai Solarin University of Education, Ijebu Ode, Ogun State, Nigeria

Corresponding Author: nelsonasemewalen@gmail.com

DOI: https://doi.org/10.70382/caijmasr.v7i9.006

#### **Abstract:**

The establishment of a cloud-based cab transportation system in Nigeria addresses significant challenges in the existing transportation infrastructure, characterized by traffic congestion, inadequate public transport services, and safety threats. With a rapidly growing population and urbanization, the need for a modernized transportation solution is very important. The reason for this paper is about creating a comprehensive cloud-based system that makes use of advanced technologies such as IoT, GPS, and data analytics to improve operational efficiency, improve passenger experience, and ensure safety. The proposed system aims to expand existing services from urbanized areas to cover all states in Nigeria, involving various transport modalities, including cabs, buses, and logistics services. The major goals include increasing accessibility, reducing travel time, and creating job opportunities while improving the environment. An implementation strategy is explained in different stages, with the need for stakeholder engagement, infrastructural development, pilot testing, and continuous improvement. This transformation not only promises to revitalize Nigeria's transportation landscape but also positions the country favorably within the global economy.

Keywords: Transportation, IOT, Cloud, Cab, GPS, Technology,

#### Introduction

Nigeria is one of the countries in the world with rapidly growing population and rapidly blooming cities and has emerged as one of Africa's largest economies and the most populous black nation in the world. According to recent estimates, Nigeria has population of over 200 million people, many of who live in urban regions and are facing significant transportation challenges due to the fact that the current transportation infrastructure is often inadequate, leading to severe traffic congestion, high accident rates, and these challenges have far-reaching implications for the economy and quality of life for its citizens.

The state of transportation in Nigeria can be summarized to include outdated road networks, insufficient public transport systems, and inconsistent transportation service levels. In urban centers like Lagos, commuters frequently spend hours in traffic due to a lack of well-maintained roadways and effective traffic management systems. The challenge is further compounded by the limited use of rail, water and air transport, which provides an alternative but are either very inadequate or unavailable in many part of the country.

It is important that this sector be modernized with technology to improve service delivery, increase safety, and ensure efficiency. One transformative approach is the establishment of a cloud-based transportation system. A cloud-based transportation system makes use of modern cloud computing technologies to manage transportation operations dynamically and efficiently. With the use of the cloud, transportation agencies can access real-time data about traffic conditions, commuter patterns, and fleet management, leading to better informed decision-making. This system also enables seamless communication between drivers, passengers, and logistics companies, leading to an integrated transportation ecosystem.

"Cloud services are application and infrastructure resources that exist on the Internet. Third-party providers contract with subscribers for these services, allowing customers to leverage powerful computing resources without having to purchase or maintain hardware and software" (HPE Glossary, 2025).

#### **Statement of Problem**

"Transportation is crucial for fostering economic development, generating employment opportunities, and linking individuals to vital services like health care and education. However, in numerous developing nations, these advantages are not being fully achieved.... Developing nations encounter a twofold challenge regarding transportation: providing effective, secure, and cost-effective mobility to all, while also achieving this with a significantly reduced climate impact" World Bank Group (2024).

The problems associated with cab services includes incidence strange people pretending to be cab drivers who many at times have invaded the scene taking advantage of innocent people and kidnapping them for ransoms or ritual purposes. Secondly, intending passengers are stressed and spend so much time and money looking for vehicles that will convey them from one location to another with little or no success.

Many passengers end up missing their intended vehicles or flights which consequentially come with worries, anxieties and delay in their journeys. This can also lead to nullification or postponement of important appointments.

Finally, the cloud based transport vehicle available in Nigeria are functional in only very few states. Many people are not aware of their existence and as such do not benefit from them. These vehicles are limited to cabs which are suitable for conveying passengers but not fit for luggage.

#### Aim and Objectives

The aim of this paper is to propose a cloud based transportation system that will cover all the cities and communities in Nigeria.

The objectives include

- Expanding the few functional cloud based cab services operating in Benin, Lagos, Abuja and Port Harcourt to every state of Nigeria.
- 2. Extending the services beyond cab services to buses, lorries, luggage carriages, ambulance, motor bikes and weigh bill services.

- 3. Creating a general enquiry services for customers.
- 4. Increasing opportunities for job creation.

#### **Importance of Modernizing Transportation**

Updating the transportation sector with cloud-based solutions is not merely a technological enhancement; it is a crucial measure toward fulfilling various socio-economic goals. Enhanced transportation infrastructure can significantly impact economic development by decreasing travel time, reducing logistics expenses, and improving access to markets and services. Furthermore, a more advanced transportation system can address environmental issues by encouraging more efficient vehicle operation and minimizing emissions.

Investing in cloud-based technologies can also enhance road safety by enabling better data analysis for accident prediction and prevention while optimizing emergency response times. Enhanced public transportation services can improve the overall quality of life, motivating individuals to choose more sustainable travel options, thereby alleviating congestion in urban areas.

Moreover, as Nigeria aims to boost its global standing, embracing innovative technological solutions like cloud computing will enhance the country's position on the international stage. By modernizing its transportation infrastructure, Nigeria can draw in foreign investment, invigorate local economies, and generate employment opportunities within the transportation and technology industries.

# What is a Cloud-Based Transportation System?

Essentially, a transportation system based in the cloud is a network enabled by cloud computing technologies that links various participants in the transportation ecosystem. This framework can consolidate different transportation modes, ranging from public transit systems to freight and logistics services, on a single platform that offers real-time access to data and communication features.

The primary elements of a cloud-based transportation system might consist of:

- Real-time monitoring of vehicles and passengers, leading to improved routing and scheduling.
- Analytics and reporting tools that deliver insights into operational efficiency and identify potential areas for enhancement.
- Mobile applications aimed at improving the user experience, allowing commuters to plan their journeys effectively and stay updated on travel conditions.
- IoT (Internet of Things) devices that support data gathering and enhance connectivity among various transportation modes.

# Types of Transportation Available in Nigeria

Nigeria's transportation sector is varied, incorporating different modes such as road, rail, air, and waterways. Each of these modes is essential for the movement of people and goods, but they also highlight the systemic challenges confronting the nation.

- 1. Road Transportation: This is the most commonly utilized mode for both passenger and freight movement. The road network is vital for linking urban and rural communities. Nigeria's roads and highways constitute the core of the nation's transport infrastructure, handling 90% of all passenger and freight traffic, as reported by the NIIMP. As the largest segment, it contributed N2.4 trillion (\$6.4 billion) to GDP in 2020, a decrease from N2.7 trillion (\$7.2 billion) the previous year (Wikipedia, 2025). Nevertheless, Nigeria's road infrastructure often suffers from damage and neglect, characterized by potholes and insufficient maintenance. The World Bank estimates that around 85% of the nation's roads remain unpaved, resulting in significant issues, including increased vehicle operating costs and extended travel times.
- 2. Rail Transportation: While Nigeria possesses a historic railway system, it has been marred by years of neglect and insufficient investment. Present railway services are limited, primarily catering to passenger transit between major cities. Recent initiatives to revive the rail sector, including collaborations with international firms for new line development, have shown promise.

However, challenges persist in establishing a strong and dependable rail network that works in tandem with road transport.

- 3. Air Transportation: Nigeria's airports function as crucial gateways to global destinations. With multiple domestic airlines operating within the country, air travel has become an increasingly viable option for urgent journeys. Nonetheless, the aviation sector encounters problems such as inadequate airport facilities, safety issues, and elevated operational costs due to infrastructure shortfalls.
- 4. Waterways: Nigeria's vast network of rivers and coastal routes offers an underutilized potential for transportation. Inland waterways, especially in the Niger Delta area, could provide alternative routes for cargo and passenger transit; however, inconsistent services and inadequate infrastructure impede their growth.

## **Technological Adoption in Nigeria's Transportation**

Despite the obstacles Nigeria faces in transportation, technological advancements are gradually making progress in the sector, though not in a uniform manner. The increasing prevalence of mobile phones has led to the rise of transport-related applications, with services like Uber and Bolt gaining traction in urban areas (Omotayo, 2020). These platforms offer convenience and transparency for riders, but they encounter regulatory and operational hurdles, such as challenges with driver screenings, safety measures, and payment systems. Furthermore, logistics companies are starting to embrace technology for fleet management and tracking, making use of GPS and other software to optimize their routes and cut costs. Still, the absence of comprehensive data collection throughout the sector hinders the efficacy of these technological solutions. The incorporation of data-driven decision-making into transportation planning largely remains uncharted territory, highlighting the need for a centralized cloud-based system to leverage this potential.

## Benefits of a Cloud-Based Cab Transportation System

According to Khan (2024), some significant advantages that a cloud-based system can offer are outlined below:

- Scalability and Flexibility: One of the primary advantages of cloud computing
  is its scalability. Taxi applications often encounter fluctuating demand levels,
  especially during peak times such as holidays, weekends, or special events.
  With cloud computing, developers can modify resources in accordance with
  demand, ensuring the application can handle increased traffic without
  experiencing performance issues. This flexibility guarantees the app remains
  responsive and provides a seamless user experience, regardless of the number
  of users online.
- Cost-Effectiveness: Cloud computing eliminates the need for substantial upfront investments in physical infrastructure. Developers can take advantage of the pay-as-you-go model offered by cloud service providers, paying only for the resources they actually use. This model significantly reduces capital expenditures and operational costs, presenting a budget-friendly option for taxi app development. Additionally, cloud computing lowers expenses associated with hardware maintenance, upgrades, and energy consumption.
- Enhanced Security: Security is a critical issue in the development of taxi apps, as these applications handle sensitive user data, including personal information and payment details. Cloud service providers implement robust security measures, such as encryption, access controls, and regular security assessments. These measures protect user data from unauthorized access and cyber threats. Furthermore, cloud providers comply with industry regulations and standards, offering an extra layer of security assurance.
- Improved Collaboration and Productivity: Cloud computing facilitates easy collaboration among development teams, no matter where they are located. Cloud-based development environments enable multiple developers to work on the same project simultaneously, increasing efficiency and reducing development time. Features like version control, real-time updates, and collaborative workspaces enhance the development process, allowing team members to work together smoothly and effectively.

- Disaster Recovery and Business Continuity: Cloud computing offers robust disaster recovery and backup solutions, ensuring data security and swift restoration after a system failure or data loss. Cloud service providers maintain multiple data centers in various locations, creating redundancy and ensuring business continuity. This feature is particularly important for taxi applications, as any downtime can lead to significant revenue loss and damage to the app's reputation.
- Accelerated Time-to-Market: The competitive nature of the taxi app industry
  demands a quick time-to-market. Cloud computing simplifies the
  development process by providing ready-to-use infrastructure and
  development tools. Developers can easily set up development environments,
  test new functionalities, and deploy updates without the delays associated with
  arranging physical hardware. This adaptability enables taxi app developers to
  respond rapidly to market demands and retain a competitive advantage.
- Enhanced Analytics and Insights: Cloud computing allows taxi app developers to access advanced analytics and machine learning (ML) capabilities. Cloud-based analytics tools provide immediate insights into user behavior, ride patterns, and app performance. These insights can be utilized to optimize routes, enhance driver efficiency, and elevate the overall user experience. Machine learning algorithms can predict demand, leading to improved resource allocation and dynamic pricing models.
- Global Presence and Access: Cloud service providers operate data centers worldwide, ensuring that taxi applications remain accessible to users around the globe with minimal delays. This global footprint is essential for taxi applications looking to expand their services to different areas. Cloud computing ensures that the application stays available and responsive for users, offering a consistent, high-quality experience regardless of their location.
- Connecting with External Services: The creation of taxi applications often requires the integration of diverse external services, including payment processing systems, mapping tools, and communication platforms. Cloud computing simplifies this integration by providing APIs and pre-built

- connectors. This allows developers to quickly upgrade the app's features, enhancing its functionality and overall user satisfaction.
- Sustainable Choice: Furthermore, cloud computing offers a more eco-friendly
  option compared to traditional data centers. Cloud service providers
  emphasize energy efficiency in their data centers, employing advanced cooling
  techniques and utilizing renewable energy sources. By implementing cloud
  computing, taxi app developers can reduce their carbon footprint and
  promote environmental sustainability.

#### **Environmental Benefits**

Transitioning to a cloud-driven transportation system also aligns with sustainable development objectives by fostering eco-friendly transport choices:

- Decrease in Emissions: By enhancing routing and vehicle efficiency, cloud-based solutions can help lower greenhouse gas emissions from transportation.
   Effective fleet management can result in reduced fuel use, benefiting both the environment and the economy.
- Promotion of Sustainable Practices: A digital transport system can facilitate the use of electric vehicles (EVs) and encourage reliance on public transportation instead of private car ownership, further aiding in the reduction of urban congestion and pollution.
- Contribution to Smart Cities: The adoption of a cloud-based transportation system is a crucial part of the broader smart city framework. It has the potential to integrate with other urban services, leading to improved overall sustainability and urban planning.

# Contextual Integration and Enhanced Quality of Life

In addition to operational efficiencies and environmental sustainability, cloud-based systems enhance citizens' quality of life:

• Improved Commuter Experience: With easier access to information and better services, commuters enjoy shortened travel times, increased reliability, and greater access to transportation choices.

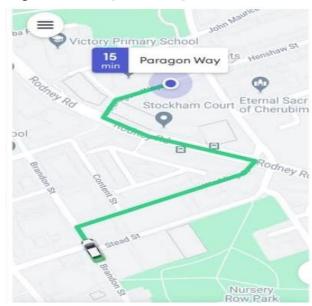
 Inclusivity: By incorporating various modes of service, including standard public transport and ondemand options, a cloud-based transportation system can enhance mobility access for marginalized groups and individuals with disabilities.

With the implementation of a cloud-based transportation system, Nigeria has the opportunity to revolutionize its transportation landscape, tackling existing issues while fostering economic growth, safety, and sustainability. The subsequent chapters will explore the specific components, strategies, and implementation approaches necessary to realize these advantages.

## **Cloud Based Cab Transportation in Nigeria**

The movement of people and goods from place to place within cities and communities is quite challenging in many part of the country as they often find it difficult and discomforting. One may want to move to the Transit Park, seaport or airport in order to catch up with a journey and will just not know who to contact. Others may want to move properties from one location to another or even may need an ambulance and will not know who to meet. This could lead to potential waste of time and money, worries and apprehensions, delay or loss of appointments.

Cloud based cab system can be a great solution these problems. Cab is another word for taxi. A well established cloud based cab system will help customers to easily access commercial vehicles around their vicinities that can easily and affordably convey persons and goods to desired destinations (kali &olamide 2022). The movement may be very early in the morning or late in the middle of the night because of late arrival of client, yet accessing cab services is always possible at any time. It is also safe and secure to a very great extent.


#### How Does It Work?

"Like all other IT solutions, cloud services rely on hardware and software. However, unlike traditional hardware and software solutions, users don't need anything other

than a computer, network connection, and operating system to access cloud services" (Redhat, 2022).

Cloud based cab services is not a rocket science as it is a simple methodology. The cab service is an online platform where drivers register their vehicles for commercial use and for hire. The app is installed in clients' mobile phones from play store (khan 2024). The client can then access the cab service provider by just clicking and selecting their desired options and in few minutes the vehicle arrives. But before the vehicle arrive, you'll pick from the available vehicle near you which begin to display together with their registered plate numbers for easy identification of the right vehicle. Once you make a choice, place a call to the driver and agree, then he comes to you.

The transport fair is determined by the company (service provider) and not the driver, which makes it very affordable. Another benefit is that the platform has maps which help the company know the location of the client and only need to collect his or her destination. A very good example is Bolt cab service operating in Edo state, south- south Nigeria. We also have InDrive in Lagos, Abuja and Port Harcourt, Nigeria. The map below represent Bolt services application.



In Nigeria, there are various cloud-based taxi services available, such as:

1. Uber - A well-known platform that allows users to request rides via its application.

- Bolt Provides comparable services to Uber, featuring budget-friendly transportation options.
- In Drive An online taxi booking platform that emphasizes affordable rides and discounts.
- 4. Lagos Ride A transportation solution that allows users to book rides and share expenses with others traveling in the same direction. It will be very great if this service is established in other cities in the country as it is safe, secure, affordable and economically viable, a potential job provider.

You need fuel to run your vehicle, food on your table, fees for your children's school and funding to pay bills. Don't sell your vehicle. Instead register with any cloud based cab services and get employed. Bolt Company presently operates car cab services. It can extend to bus, pickup, and lorry hire as well as services like ambulances, towing vans and vehicle repairs.

However, there are 40 app based taxies in the country as stated by Ogboeli et al. (2024) and given in table 1.

A research by Ogboeli et al. (2024) shows that there were 40 app based taxies in Nigeria, out of which Bolt has a spread of 97% (35 out of 36 states). The remaining 39 app taxies had a total spread of only 44.4% (16 out of 36 states) in Nigeria. We must understand that app based taxies are not exactly the same as cloud based taxies. An "app-based" system is a software application that is installed directly on a user's device, whereas a "cloud-based" system is utilized through the internet, operating on remote servers and accessed via a web browser or a specific application. This means that users are not required to install anything locally; essentially, cloud-based applications can be accessed from any device with an internet connection, while app-based applications are limited to the device on which they are installed.

A cloud-based application refers to software that operates on distant servers and is accessed by users through the Internet. Rather than being installed directly on the user's computer or device, both the application and its related data are stored in the cloud, which consists of a network of robust, centralized servers (Ramotion, 2024)...

| Code | Names of<br>App-based<br>Taxi Services | Code | Names of App-<br>based Taxi<br>Services | Code | Names of App-<br>based Taxi<br>Services | Code | Names of App-<br>based Taxi<br>Services |
|------|----------------------------------------|------|-----------------------------------------|------|-----------------------------------------|------|-----------------------------------------|
| 1    | Bolt                                   | 11   | Alpha Ride                              | 21   | 13Cabs                                  | 31   | Boo Boo cabs                            |
| 2    | Uber                                   | 12   | Opay                                    | 22   | Afro                                    | 32   | Cabmen                                  |
| 3    | Pamdrive                               | 13   | Ceety Taxi                              | 23   | Gaabia                                  | 33   | Smoothride                              |
| 4    | In Drive                               | 14   | My Cabman                               | 24   | Gidi                                    | 34   | Gomyway                                 |
| 5    | Smart cabs                             | 15   | Fast Taxi                               | 25   | Liftme up                               | 35   | Holycab                                 |
| 6    | Rida                                   | 16   | Zrideng                                 | 26   | Safeboda                                | 36   | Hitch Africa                            |
| 7    | Oga taxi                               | 17   | CabbyNg                                 | 27   | Pickme up                               | 37   | Plentywaka                              |
| 8    | Oride                                  | 18   | Max                                     | 28   | Naijacab                                | 38   | Eekocab                                 |
| 9    | Eryde                                  | 19   | RideOnTaxi                              | 29   | IVM Cruise<br>App                       | 39   | Enviable<br>transport                   |
| 10   | Easy rRide                             | 20   | Tusla Yellow<br>Cab                     | 30   | Carxie                                  | 40   | Jekalo                                  |

Sources: Researcher's computation, 2021, (National Bureau of Statistics & PEDPAN)

Table 1 Key Components of a Cloud-Based Transportation System

Establishing a cloud-based transportation system in Nigeria involves several critical components. These components work together to create an integrated, efficient, and user-friendly transportation network. Below are the key elements necessary for the successful implementation of such a system:

#### **Cloud Infrastructure**

The foundation of any cloud-based system is its cloud infrastructure, which includes the necessary hardware, software, and services to enable data storage, access, and management.

Types of Cloud Services: According to HPE Glossary (2025) types of cloud services that can be leveraged:

- Infrastructure as a Service (IaaS): Provides virtualized computing resources over the internet. Transportation agencies can host their applications and databases on a flexible infrastructure.
- Platform as a Service (PaaS): Offers a framework for developers to build and deploy applications without managing the underlying hardware. This is vital for creating customized transportation apps tailored to local needs.

- Software as a Service (SaaS): Delivers software applications over the internet. Commuters can benefit from applications that facilitate trip planning, ticket booking, and real-time updates.
- Anything as a Service (XaaS): There are several other service models defined as XaaS, which do not strictly fit in the above three categories. They are essentially anything as a service and are often limited to narrower offerings. Disaster Recovery as a Service, Communications as a Service, and Monitoring as a Service are good examples.

## **Data Analytics**

Data analytics is a cornerstone of any cloud-based transportation system, enabling agencies to make informed decisions and enhance operational efficiency.

- Importance of Data for Decision-Making: Analyzing data collected from various sources, such as traffic sensors, GPS devices, and user feedback, helps agencies understand current conditions, identify patterns, and forecast future demand.
- Predictive Analytics for Demand Forecasting: By employing predictive analytics tools, transportation providers can anticipate peak travel times, adapt services accordingly, and allocate resources efficiently to meet passenger demand.
- Performance Metrics and Reporting: Establishing key performance indicators (KPIs) will allow transportation agencies to monitor performance, identify bottlenecks, and implement improvements based on data-driven insights.

# **Mobile Technology and Applications**

Mobile technology is vital for engaging users and facilitating seamless travel experiences.

 Development of User-Friendly Apps: Creating mobile applications that provide real-time information, route planning, and payment options is crucial for enhancing the commuter experience. Features such as in-app navigation,

- notifications for delays or cancellations, and online ticket purchases can greatly improve usability.
- Multi-Modal Integration: Ensuring that these applications allow for multi-modal travel options—combining buses, rail, and ride-sharing services—will enable users to plan more efficient journeys, increasing overall public transit usage.
- Accessibility Features: The applications should incorporate features for users
  with disabilities to ensure inclusivity and facilitate equal access to
  transportation services.

## IoT (Internet of Things) Integration

Integrating IoT technology is essential for creating a responsive and data-rich transportation system.

- Real-Time Tracking and Monitoring: IoT devices can be installed in vehicles
  to provide real-time tracking information. This helps in fleet management and
  enables users to check the status and location of vehicles before they arrive.
- Smart Traffic Management: Implementing IoT sensors across road networks
  can monitor traffic flow and collect data to optimize traffic lights and signage,
  thus improving vehicle movement and passenger safety.
- Environmental Monitoring: IoT can also be used to monitor air quality and noise levels, allowing agencies to assess the environmental impact of transportation policies and make necessary adjustments.

# **Security Measures**

Implementing robust security measures is paramount to protect sensitive data and ensure the safety of users navigating the cloud-based transportation system.

Data Privacy and Protection: Establishing strict protocols for data encryption
and user authentication will safeguard sensitive information collected through
applications. Adhering to international data protection standards is essential
for building trust among users.

- Cybersecurity Protocols: Transportation systems must implement cybersecurity defenses against potential threats, including regular security audits, intrusion detection systems, and employee training on recognizing potential security threats.
- Disaster Recovery Plans: Developing comprehensive disaster recovery and business continuity plans will ensure that services remain operational in the event of system failures or cyberattacks.

# **Regulatory Compliance**

To facilitate the successful implementation of a cloud-based transportation system, it is crucial to adhere to relevant laws and regulations.

- Policy Frameworks: Transportation agencies must develop policy frameworks that promote technology adoption while protecting citizen rights and ensuring safety.
- Public Engagement: Engaging stakeholders—including government bodies, transportation operators, and the public—is essential for ensuring compliance and gathering input on regulatory measures.
- Interoperability Standards: Establishing standards for data sharing across different transportation modes and agencies will enhance integrated operations and improve user experience.

By focusing on these key components, Nigeria can effectively establish a cloud-based transportation system capable of addressing current challenges and optimizing transportation processes. The next chapters will detail strategic implementation frameworks and address potential challenges and risks associated with this transformation.

# Implementation Strategy for a Cloud-Based Transportation System

Successful execution of a cloud-based transportation system in Nigeria will necessitate a clearly outlined strategy that encompasses the following steps.

#### Phase 1: Needs Evaluation and Stakeholder Involvement

- Performing a Thorough Needs Evaluation: Examine the existing transportation infrastructure, user requirements, and challenges. This should involve collecting information from commuters, transportation providers, and government agencies to pinpoint specific areas where cloud technology can be beneficial.
- Involving Stakeholders: Create a diverse coalition of stakeholders, including
  government officials, private transport operators, technology providers, and
  user representatives. Involving these stakeholders from the beginning will
  enhance support, encourage teamwork, and ensure a variety of viewpoints are
  incorporated into the planning phase.
- Defining Clear Goals and Objectives: Develop distinct, measurable objectives for the system, concentrating on addressing existing transportation issues, enhancing service efficiency, and improving user satisfaction.

# **Phase 2: Infrastructure Development**

- Choosing Suitable Technology Partners: Form partnerships with trusted cloud service providers and technology vendors with relevant experience in implementing comparable systems. Assess their solutions against the objectives identified during the needs evaluation phase.
- Building the Essential Infrastructure: Create the foundational infrastructure, which includes cloud services, data storage, and networking capabilities.
   Ensure that this infrastructure is scalable and can accommodate future demands.
- Integration of IoT Devices: Deploy IoT devices across critical transportation assets, such as vehicles, traffic signals, and transit stations, to facilitate data collection and real-time monitoring.

# **Phase 3: Pilot Programs and Testing**

 Initiating Pilot Programs: Start with pilot projects in selected urban areas or on specific transportation routes to evaluate the system's functionality and

- collect user feedback. Pilot programs provide an opportunity for testing with minimal risk and yield valuable insights for broader implementation.
- User Training and Support: Offer extensive training for users, operators, and
  maintenance staff regarding the new systems and technologies. This training
  is crucial to ensure that all stakeholders are adequately prepared to leverage
  the benefits of the cloud-based transportation system.
- Monitoring and Evaluation: Create a monitoring and evaluation framework to assess the pilot programs' efficacy in fulfilling the established objectives. Gather data on user engagement, performance metrics, and any technical challenges encountered.

## **Phase 4: Comprehensive Implementation**

- Launch of the Complete System: Utilize feedback and insights from the pilot
  programs to enhance the system and initiate a full-scale launch. This should
  involve broadening the cloud-based transportation system to include more
  routes, services, and geographical locations.
- Ongoing Training and Assistance: Provide continuous training and support for all users, especially during the transition to full-scale implementation. Keep dedicated support channels available to address any issues or queries that emerge.
- Continuous Data Gathering: Persistently gather data from the expanded system to assess performance and user satisfaction. This information should guide future enhancements and updates to the transportation services.
- Phase 5: Ongoing Improvement and Adaptation
- Feedback Channels: Establish effective feedback channels that allow users to share their experiences and recommendations for service enhancement.
   Regular assessment of this feedback will guide system improvements and modifications.

- Frequent Updates and Upkeep: Create a timeline for regular updates and maintenance of technology and infrastructure to ensure peak performance and security.
- Assessing and Adapting to Emerging Technologies: Remain informed about new technologies and advancements in transportation systems globally. Embrace innovative solutions and practices that could further improve the cloud-based transportation system.

## **Potential Challenges during Implementation**

- Technological Obstacles: Ensure dependable internet access, especially in rural regions, to enable uninterrupted data communication.
- Resistance to Innovation: Tackle stakeholders' apprehensions and reluctance towards new technologies by providing education, fostering transparency, and showcasing the advantages of the new system.
- Financial Limitations: Pursue partnerships between public and private sectors, as well as explore international funding options to alleviate financial burdens and support infrastructure advancement.
- Compliance with Regulations: Collaborate with policymakers to create favorable regulations that ease the implementation and functioning of cloud-based transportation services.

When successfully executed, we can create a cloud-based transportation system that tackles current challenges and enhances overall transportation services.

# **Expected Outcomes of a Cloud-Based Transportation System**

The introduction of a cloud-based transportation system in Nigeria is expected to produce a wide range of beneficial outcomes across multiple sectors. This discussion details the anticipated advantages for users, transport agencies, and the nation as a whole.

# **Enhanced Efficiency and Dependability**

Optimized Operations: Utilizing cloud technology allows for real-time data analysis and decisionmaking, resulting in better route planning and shorter wait times for users. This boosts the overall efficiency of the transportation network.

Greater Dependability: With real-time tracking features, users can receive precise updates about arrival times and delays, significantly enhancing the reliability of public transportation services.

## **Improved User Experience**

Ease and Accessibility: The creation of intuitive mobile applications enables passengers to smoothly explore transportation options, buy tickets, and get notifications about their journeys, making travel more user-friendly (Shah & Rathi, 2022).

Inclusiveness: By incorporating features for individuals with disabilities and catering to users with limited digital skills, the system fosters inclusivity, ensuring that all demographics can benefit from enhanced transportation options (Khan et al., 2021).

#### **Economic Advancement**

Job Opportunities: The launch of a cloud-based system can stimulate job growth in both the technology and transportation fields, as it will necessitate staff for system management, IT support, and operations.

Increased Access to Employment: Enhanced transportation services can improve access to job opportunities for residents, furthering economic progress, especially in underserved areas (World Bank, 2020).

# **Environmental Advantages**

Emission Reductions: A cloud-based transportation system promotes effective fleet management and route optimization, which aids in decreasing fuel usage and lowering greenhouse gas emissions (Kok et al., 2021).

Encouragement of Sustainable Practices: The system can advocate for the use of public transit over private vehicles, resulting in an eco-friendly urban transport model that alleviates urban congestion and pollution (Ababayo, 2023).

## **Data-Driven Insights**

Improved Resource Distribution: Real-time analytics and forecasting tools enable transportation agencies to distribute resources wisely in accordance with demand trends, ultimately enhancing service delivery (Khan et al., 2021).

Informed Policymaking: Access to trustworthy data allows government officials to make well-informed decisions about transportation infrastructure and services, ensuring they align with public needs (Shah & Rathi, 2022).

## **Enhanced Safety and Security**

Improved Safety Protocols: Real-time surveillance of vehicles, traffic conditions, and passenger behaviors can help detect potential safety risks and facilitate prompt responses to incidents, thus improving overall transportation safety (Kok et al., 2021).

Increased Security Measures: By implementing sophisticated cybersecurity protocols, transportation authorities can safeguard sensitive information and foster user confidence concerning their personal data (Kok et al., 2021).

# **Societal Advantages**

Increased Social Inclusion: The system is designed to offer equal access to transportation options, making certain that marginalized or underserved communities benefit from enhanced public transport.

Alleviation of Traffic Congestion: By streamlining traffic patterns and promoting public transit usage, cities can experience a decrease in overall traffic congestion, resulting in reduced stress for commuters and better quality of life (World Bank, 2020).

#### Conclusion

The future of cloud-based transportation systems in Nigeria holds significant potential for enhancing mobility, efficiency, and sustainability. We need a technology based transportation system that serves the needs of its citizens while contributing to economic growth and nation's security. With the increasing need for better transport solutions that will ensure fast and easy processing, comfort, affordability as well as safety anytime and from anywhere in the country, implementing a cloud-based transportation system can greatly improve Nigeria's public transportation by making it more efficient, reliable, and user-friendly. When we fully implement road transportation which is cloud based and which also goes beyond cabs or taxies to buses, lorry, vans hire and ambulances services we can get real time benefits that can be of help in tackling challenges such as unavailability, inefficiency, delay, insecurity, high cost inadequate service coverage and unemployment. Other benefits include enhanced user experience, economic growth, environmental sustainability, and informed decision-making by transportation authorities.

#### Recommendations

- Begin with Pilot Programs: Test the system in specific locations prior to a full implementation. This allows for modifications based on actual user input and helps detect any problems early.
- Involve Stakeholders: Bring together all pertinent parties—government bodies, transportation providers, and community organizations—in the planning and decision-making stages. Their contributions are critical for the system's success.
- Emphasize Connectivity: Enhance internet accessibility in rural and underprivileged regions to ensure that all users can take advantage of the system. Work with telecommunications companies to boost broadband coverage.
- 4. Ensure Data Security: Establish robust security practices to safeguard user information and foster trust among users. Regularly refresh cybersecurity measures to protect against potential threats.

- 5. Inform Users: Initiate educational campaigns to raise public awareness about the new system and its advantages. Provide training sessions for individuals who may be unfamiliar with technology.
- Promote Sustainable Practices: Advocate for the use of public transportation and facilitate ecofriendly alternatives, like electric vehicles, to reduce environmental impact.
- 7. Consistently Evaluate and Adapt: Continuously assess the system's effectiveness and collect user feedback to implement improvements as needed. Be receptive to integrating new technologies and methodologies.
- 8. Secure Financing: Pursue collaborations with private enterprises and investigate international funding sources to support the project and guarantee long-term sustainability.

By adhering to these suggestions, Nigeria can successfully implement a cloud-based transportation system that addresses the needs of its citizens and aids in overall development. The emphasis on technology, efficiency, and inclusivity will significantly improve public transport services and enhance urban living standards.

#### References

Adebayo, A. (2023). \*The Role of Technology in Transforming Public Transportation Systems in Africa\*. Journal of Urban Transport, 12(3), 215-230.

Adewumi, A. &Oyelami, O. (2021). \*Integration of Smart Transportation Solutions in Developing Countries: A Nigerian Perspective\*. International Journal of Transport Development, 5(2), 77-89.

HPE Glossary (2025) What are Cloud Services?© Copyright 2025 Hewlett Packard Enterprise Development LP

Kalu, P., & Olamide, A. (2022). \*The Future of Urban Mobility: Leveraging Innovation in

Nigeria's Transportation Sector\*. African Journal of Transportation Studies, 15(1), 50-66.

Khan, A., Raza, M., & Khan, S. (2021). Impact of Intelligent Transportation Systems on Traffic Management: A Review. \*Journal of Traffic and Transportation Engineering\*, 9(1), 14-27.

Khan, U (2024). What Are the Benefits of Using Cloud Computing in Taxi App Development? Published Aug 2, 2024. https://www.linkedin.com/pulse/what-benefits-using-cloud-computingtaxi-app-development-umra-khan-twarc

Kok, A., van der Veen, A., &Huijbregts, M. (2021). Assessing the Environmental Impacts of Intelligent Transport Systems: A Systematic Review. \*Transportation Research Part D: Transport and Environment\*, 90, 102638.

National Bureau of Statistics, Nigeria. (2021). \*Transport Sector Report\*. Retrieved from [NBS Official Website](<a href="http://www.nigerianstat.gov.ng">http://www.nigerianstat.gov.ng</a>).

- Ogboeli, G. L., Akiagba, N. O.Osi, V. C., Dagogo, S. (2024). App-Based Taxi Service Operations and Insecurity Challenge in Nigeria. 2024 IJMRSET, Vol. 7, Issue 2. DOI: 10.1568/IJMRSET.2024.0712220
- Omotayo, T., & Ojo, A. (2020). \*Public Transportation and Smart City Development in Nigeria: Opportunities and Challenges\*. The Nigerian Journal of Transportation, 8(1), 43-59.
- Ramotion (2024). Web vs. Cloud Apps: Which One Fits Your Business Needs?Last updated: Nov 19, 2024. <a href="https://www.ramotion.com/blog/web-based-vs-cloud-based-apps/">https://www.ramotion.com/blog/web-based-vs-cloud-based-apps/</a>
- Redhat, (2022)..What are cloud services? Published March 14, 2022.<u>https://www.redhat.com/en/topics/cloud-computing/what-are-cloud-services</u>
- Shah, S. & Rathi, S. (2022). Cloud-Based Transportation Management: Transforming Transportation Systems in Developing Countries. \*International Journal of Transportation Science and Technology\*, 11(2), 145-158.
- Transport in Nigeria. (2025, January 18). In *Wikipedia*. https://en.wikipedia.org/wiki/Transport\_in\_Nigeria
- World Bank. (2020). \*Transport for Development: The World Bank's Transport Sector Strategy.\* Retrieved from [World Bank Transport

Strategy](https://www.worldbank.org/en/topic/transport/publication/transport-for-development).

World Bank Group (2024). Transport

Last updated Oct 17, 2024. https://www.worldbank.org/en/topic/transport/overview