
 

 

International Journal of Modelling & Applied Science Research  

Published by Cambridge Research and Publications 

 

                                                               IJMASR: E-ISSN 3027-2122 P-ISSN 3027-0545 
142 

Vol. 3 No. 9 

March, 2024. 

POWER COMPARISON OF SOME PARAMETRIC AND NON-

PARAMETRIC TESTS 

 

 
1BASHIR ALHAJI MUSTAPHA, 2ALHAJI MODU ISA, AND 

3TIJJANI ADAMU 
1Department of Statistics, The Federal Polytechnic Damaturu, Yobe State, 

Nigeria. 2Department of Mathematics and Computer Science, Borno State 

University, Nigeria. 3Department of Statistics, University of Maiduguri, Borno State, Nigeria. 

bashirmustapha65@gmail.com 

 

ABSTRACT 

In this study power of statistical tests is used as a criterion for selection of best method.  Experiments 

were subjected to both parametric and non-parametric methods of analysis; large and small samples were 

considered in each case. It was found that for large samples, the parametric tests have an average power 

of 80.57% and the non-parametric has 77.74% for small samples, the parametric tests gave an average 

power of 52.43% while non-parametric tests recorded 35.76%. When both large and small samples 

were combined, the parametric tests gave an average power of 66.5% while the non-parametric tests 

recorded 56.85%. It could be concluded that parametric tests are generally more powerful than their 

non-parametric counterparts and also large samples are more powerful than small samples. 
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INTRODUCTION 

The new encyclopedia Britannica (1998) gave a concise definition of statistics as (“the science of 

collecting, analyzing, presenting and interpreting data”). On that basis, therefore, a statistician is basically 

concerned with the chance outcomes that occur in scientific investigation Tarrel (2021). He may be 

interested in the number of accidents occurring at a certain location, the outcome when a coin is tossed, 

or the amount of residue deposited in a chemical experiment. 

Stapor and Stapor (2020) claimed that in statistical inference we are concerned in making decisions and 

drawing conclusions about a large set of data which we only have partial knowledge based on a smaller 

subset of the data; and so statistics provides tests which formalize and standardize our procedures for 

drawing conclusions. Therefore, one can say without any loss of generality that inferential statistics deals 

with two types of problems; estimation of population parameters and tests of hypotheses. 

A common problem for statistical inference is to determine, in terms of probability, whether observed 

inferences between two samples signify that the population samples are themselves really different Tintle 

et al., (2020). It is clear that whenever we collect two groups of scores by random methods we are likely 

to find that the scores differ to some extent. And differences occur on the basis of operations of chance. 

Then the question here is how can we determine in any given samples whether the observed differences 

are merely due to chance or not? Tredennick et al., (2021) claimed that the procedures of statistical 

inference enables us to determine in terms of probability, whether the observed difference is within the 
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range which could easily occur by chance or whether it is so large that it signifies that the two samples 

are probably from two different populations. 

Cann et al.,(2004) is of the view that in the development of modern statistical methods, there emerged 

a technique of inference which made a good many assumptions about the nature of the population from 

which the scores were drawn. Since populations values are parameters these statistical techniques are 

called parametric. 

Also of recent, we have witnessed developments of a large number of inferential methods, which do not 

make numerous or stringent assumptions about parameters. These new techniques are called 

distribution-free or non-parametric tests, and require fewer assumptions Yao et al.,( 2021). 

It was reported by many authors such as Lee-Yaw et al., (2022), Davies et al., (2020) and Dalmaijer et 

al., (2022), that the power of a test is its sensitivity and ability to detect relationship that exists on the 

population. It is the probability of rejecting the null hypothesis when it is false. Therefore a good test 

should have a very low β and high percentage of power.  

A hypothesis is an assumption or speculation we make about a population parameter Lan et al.,( 2020). 

In hypothesis testing, we must state the assumed or hypothesized value of the population parameter 

before we begin sampling. The assumption we wish to test is called the null hypothesis and is symbolized 

H0 Trafimow et al., (2021). If our sample results fail to support the null hypothesis, we must conclude 

that something else is true. Whenever we reject the null hypothesis, the conclusion we do accept is called 

the alternative hypothesis and is symbolized H1.  

Maier and Lakens (2022) claimed that when decision is to be made about differences, then Ho should be 

tested against H1. H1 constitutes the assertion that is accepted if Ho is rejected. Also Maxwell and Delaney 

(1990) believed that the nature of the research hypothesis determines how H1 should be stated. If the 

research hypothesis simply states that two groups will differ with respect to means, then H1 is that 

0 1   which is called a one-tailed test. But if the theory predicts the direction of the difference i.e., 

that one specified group will have a larger mean than the other, then H1 may be either that 1 2  or 

1 2   in which case is called a two tailed test. The two tailed test is the most frequently used test.  

Scheel et al., (2021) believed that the hypothesis testing is on the basis of certain percentage level of 

significance. Therefore, assuming the hypothesis is correct, the significance level indicates the percentage 

of sample means that is outside certain limits. 

Wasserman et al., (2020) observed that there is no single standard or universal level of significance for 

testing hypothesis. It is possible to test a hypothesis at any level of significance. But remember that the 

choice of the minimum standard for an acceptable probability, or significance level, is also the risk we 

assume of rejecting a null hypothesis when it is true. Therefore, the higher the significance level used for 

testing a hypothesis, the higher the probability of rejecting a null hypothesis when it is true (Di Leo & 

Sardanelli 2020). 

Tredennick et al., (2021) identified three different procedures for testing hypothesis with all of them 

leading to the same decisions when the same probability (and risk) standards are used. The first approach 

that was developed is the critical value approach to hypothesis testing. Here the so called critical values 

of the test statistic that would dictate rejection of a hypothesis are determined, and then the observed 

test statistic is compared to the critical values. 
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The second approach which is more recently developed is the P-value approach. It has become more 

popular because it is the one most easily applied with computer software. This approach is based on 

determining the conditional probability that the observed value of a sample of statistic could occur by 

chance, given that a particular claim for the value of the associated population parameter is in fact correct. 

Finally, it was viewed by Serdar et al., (2021) that the critical issue in statistical conclusion validity is 

power. Therefore in the opinion of Noble et al., (2021) and Joshi and Dhakal (2021), the power of a test 

is its sensitivity or ability to detect relationships that exist on the population, and so it is the complement 

of a type II error. In conventional terms, power is the probability of rejecting the null hypothesis when 

it is false and equal 1 minus the probability of a type II error ( )1 − . 

The power of a statistical analysis is partly a function of the statistical test employed in the analysis 

Dalmaijer et al., (2022). Smith (2020) put it this way, that, a statistical test is a good one if it has a small 

probability of rejecting Ho when Ho is false. In selecting a statistical test we should simply select the one 

that has the larger probability of rejecting Ho when it is false. 

 

Aims and Objectives of the Study  

The aims and the objectives of this study are: 

- Consider small and large samples analyze the experiments by appropriate parametric test and 

also by the corresponding non-parametric test. 

- Use the criterion of power to determine which of the two methods is more powerful. 

 

LITERATURE REVIEW 

In trying to give a mathematical concept of the terms samples and populations, Karunasingha (2022) 

claimed that the terms can be described by using measures such as the mean, median, mode and standard 

deviation, when these terms describe the characteristics of a sample, they are called statistics. When they 

describe the characters of a population, they are called parameters. In brief therefore, “a statistic is a 

characteristic of a sample and a parameter is a characteristic of a population”.  

Luengo et al., (2020) ascertain that, the methods of inference we usually use are called parametric 

methods. In his words “parameters are indices, they index (or label) individual distributions within a 

particular family” To round it up, Joshi et al., (2020), Smith (2020), Karunasingha (2022) and Luengo 

et al., (2020) described parametric methods as those that involve estimating or testing the values of 

parameter(s), which are usually, population means or proportions. In a parametric test a sample statistic 

is obtained to estimate the population parameters. However, because this estimation process involves a 

sample, a sampling distribution, and a population, certain parametric assumptions are required to ensure 

that all components are compatible with each other.  

Smith (2020) gave out conditions, which must be satisfied before using any parametric test, the 

conditions includes; 

1. The observations must be independent. 

2. The observations must be drawn from normally distributed population. 

3. These populations must have the same variances. 

4. The variables involved must have been measured in at least an interval scale.  
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A scale of measurement is a particular way of assigning numbers or symbols to measure something 

Dalmaijer et al., (2022). It is believed that all forms of statistical tests rests on the scale of measurement. 

Therefore measurement theory is important because it helps us to avoid making meaningless statements.  

 

The Unpaired t-test 

The unpaired t-test does not require that the two groups be paired in any way, or even of equal sizes 

Havre et al, (2002). Here, we wish to know if the differences between the groups are real (statistically 

significant) or could have arisen by chance. 

The calculations involved in an unpaired t-test are slightly more complicated than for the paired test 

Townsend et al., (1999). 

Cann (2004) gave out steps for performing the unpaired t-test. This is as follows: 

1. Plot a histogram of the data sets to confirm that they are normally distributed. If not stop and 

use a non-parametric method. 

2. Start with the hypothesis (Ho), there is no difference between the populations of 

measurements from which samples have been drawn. (HA; there is a difference). 

3. Set a value for   (significance level). 

4. Check the variance of each group; if the variances are very different, you can reject the 

hypothesis that the samples are from a common population, even though their means might 

be similar. However, it is possible to go on and perform a t-test. 

5. Calculate t using the formula: 

    

( ) ( )
2 2

A B

X A XB
t

SE SE

−
=

+
    

Where  X = means of groups A and B, respectively and 
SD

SE
N

=  

6.  Look up the value of t for the correct number of degrees of freedom and for a one or two tailed 

test. 

 ( ) 2A Bdf n n= + −  where |An B  = the number of values in the groups compared. 

Remember that the sign of ( )/t + −  does not matter. Assume that t is positive. 

7. If the calculated value of t is greater than the critical value, Ho is rejected, i.e. there is evidence 

of a statistically significant difference between the groups. 

 

If the calculated value of t is less than the critical value, Ho is accepted, i.e. there is no evidence of a 

statistically significant difference between the groups.  

 

One-Way Analysis of Variance  

The one-way ANOVA Tests differences in single interval dependent variable among two, three or more 

groups formed by the categories of a single categorical independent variable. It is also known as univariate 

ANOVA, single ANOVA, simple classification ANOVA, or one factor ANOVA, this design deals with 

one independent variable and one dependent variable Tabachnick & Fidell, (2007). 
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In terms of statistical linear model (Montgomery, 1984) described the observation of K treatments or 

different levels of a single factor that we wish to compare as  

1,2,...,
,

1,2,...,
ij i ij

i k
X

j n
  

=
= + + 

=
           

Where ijX is the (ij)th observation,  is a parameter common to all treatments called overall mean, 

i  is a parameter unique to the ith treatment called ith treatment effect, and ij  is a random error 

component. Our objectives will be to test appropriate hypothesis about the treatment affects and to 

estimate them. 

The statistical model above described two different situations with respect to the treatment effects. This 

could be fixed-effects model or random effects model, depending on the experimenter. Therefore one-

way ANOVA could be designed as either fixed- effects or random effects. 

The table below is the summary table for the one factor completely randomized design of the analysis of 

variance, including all computational formulas. Because of the need to use a system, which can be 

extended logically to two-way analysis of variance, we use similar symbols. 

 

Table1: Summary table for one-way ANOVA (Treatment groups need not be equal), 

(Kazmier, 1996, 229) 

Source of 

variation 

Degrees of 

freedom 

(df) 

Sum of squares (ss) Mean square F ratio 

Among 

treatment 

groups (A) 

1k −  

 

 

2 2

k

T T
SSA

n N
= −  

1

SSA
MSA

k
=

−
 

MSA
F

MSE
=  

Sampling error 

(E) 
N k−  SSE SST SSA= −  SSE

MSE
N k

=
−

 
 

Total (T) 1N −  2
2

1 1

n k

i n

T
SST X

N= =

= −  
  

where Tk= the sum (total) of the values in a particular treatment group 

T = the sum of the sampled values in all groups combined 

N = total number of subjects  

k = the number of groups. 

 

The general form of the null hypothesis in the analysis of variance makes reference to the relevant 

component of the linear model. Thus, for the one-way analysis of variance the null and alternative 

hypothesis can be stated as  

Ho: 1 2 ... k  = = = or equivalently, Ho: 0k = for all treatments (factor levels)  

H1: not all 1 2 ... k  = = =  H1: 0k   for some treatments 
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When the F obtained is known, the F critical needs to be found, the F statistic is always positive. There 

is no one – or two – direction tests for the ANOVA, there is only one F critical value and it is always 

positive. To get the F critical value you use the F table. Once you have the F obtained and the F 

critical values, you simply compare the values just like a t test if the F obtained value is less than the F 

critical value, the groups are all the same; the null hypothesis is supported; the experimental hypothesis 

or alternative hypothesis is not supported; and the independent variable did not work, this means that 

nothing happened in the experiment and the statistical analysis is complete. If the F obtained is larger 

than the F critical value, the groups are not all the same, the experimental hypothesis is supported; the 

null hypothesis is not supported and the independent variable worked, this means that something is going 

on in the experiment at least two groups are different from each other. 

  

The Wilcoxon Matched – Pairs Signed Rank Test  

This is a non-parametric test for a single sample or for paired scores. It is the non-parametric analogue 

of the t test for related sample. It is used to test the hypothesis that two paired samples have come from 

the same population. Because it is non parametric, it makes only limited assumptions about the 

distribution of the data. 

Kazmier (1996) put it this way; that because the Wilcoxon test considers the magnitude of the difference 

between each sample value and the hypothesized value of the median, it is a more sensitive test than the 

sign test. On the other hand, because differences are determined, the values must be at least at the 

interval scale.  

The main ideas behind the Wilcoxon test as suggested by Cardinal (2004) is that, the null hypothesis is 

that both members of each pair are drawn from the same distribution even though the distribution may 

vary from pair to pair. Therefore if the null hypothesis is true, the differences are equally likely to be 

positive or negative and should be distributed symmetrically. 

 

 The Mann-Whitney U Test (For 2 Independent Samples) /the Wilcoxon Rank Sum Test 

This is a non-parametric equivalent of the unpaired t-test. It is used to test the hypothesis that two 

independent samples have come from the same population. Because it is non parametric, it makes only 

limited assumptions about the distribution of the data. 

Basically the independent groups design has two groups. These are called experimental and control. In 

this situation subjects are randomly selected from the population and randomly assigned to two groups. 

We should take note while using this method there is no basis for pairing scores. Nor is it necessary to 

have the same number of scores in the two groups. 

The basic logic of the test is that, suppose we have two samples with n1 and n2 observations in each

( )1 2 observation in totaln n N+ = . We can rank them, lowest to highest, from 1 to N. If the two 

samples come from identical populations, the sum of the ranks of sample 1 scores is likely to be about 

the same as the sum of the ranks in sample 2 scores. If, on the other hand sample 1 comes from a 

population with generally much lower values than sample 2, then the sum of the ranks of sample 1 scores 

will be lower than the sum of the ranks of sample 2 scores.  

There are actually two tests based on the logic used for Mann–Whitney U test . They are the Mann –

Whitney U test itself and the Wilcoxon rank- sum test. As the two tests are directly equivalent, they 
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both give the same p value. The Mann –Whitney U test is more popular and has a name that is not so 

easily confused with the Wilcoxon signed rank test.  

Procedure in calculating the Mann –Whitney U statistic. 

(1) Call the smaller group ‘group1’ and the larger group ‘group2’, so

( )1 2 1 2 ,  ignore this stepn n if n n = . 

(2) Calculate the sum of the ranks of group 1 (= R1) and group 2 (=R2)  

(3) 
( )1 1

1 1

1

2

n n
U R

+
= −  

(4) 
( )2 2

2 2

1

2

n n
U R

+
= −  

(5) The Mann-Whitney statistic U is the smaller of U1 and U2 

 To be sure of our calculations we can verify the following 1 2 1 2U U n n+ = and 

( )( )1 2 1 2

1 2

1

2

n n n n
R R

+ + +
+ =  

 It does not matter which numbers you call U1 and U2. 

 If 2n  is small, look up the critical value of U in tables. Values of U smaller than 

the critical value are significance.  

 If however, 2 20n   the U statistic is approximately normally distributed,  

                  Mean 1 2

2

n n
 =  

 Variance
( )1 2 1 22

1

12

n n n n


+ +
= . So we calculate a Z score.    

( )

1 2

1 2 1 2

2

1

12

n n
U

Z
n n n n

−

=
+ +

   

     

 

We should note that there are three different ways of calculating the Mann -Whitney U 

test. Here we shall adopt the method discussed above.  

 

Kruskal-Wallis Test 

This test is an alternative to the independent group analysis of variance, when the 

assumption of normality or equality of variance is not met. Like most nonparametric 

tests, the test assumes that the variable under study has an underly ing continuous 

distribution. It requires at least ordinal measurement of that variable.  

The Kruskal-Wallis one-way analysis of variance by ranks is an extremely useful test for 

deciding whether K independent samples are from different population (Siegel, 1 956). 
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The Kruskal Wallis technique tests the null hypothesis that the K samples come from the 

same population or from identical population with respect to average.  

Siegel (1956, pp186) explained that, in the computation of the Kruskal -Wallis test, each 

of the observations are replaced by ranks. That is, all of the scores from all of the K 

samples combined are ranked in a single series. The smallest score is replaced by rank 

1, the next smallest by rank 2, and the largest by rank N. N= the total number of 

independent observations in the K samples.  

When this has been done, the sum of the ranks in each sample (column) is found. The 

Kruskal-Wallis test determines whether these sums of ranks are so disparate that they 

are not likely to have come from samples which were all drawn from the same 

population. 

We note here, that if the null hypothesis is true, the average of the ranks for each sample 

groups should be about equal. The test statistic calculated is designated H and is based 

on the sum of the ranks in each of the several random samples.  

                             
( )

( )
2

1

12
3 1

1

k
j

j

R
H N

N N nj=

 
= − +  +  

  

Where   

 

N = Combined sample size of the several samples  

R j = Sum of the ranks for the j t h  sample 

n j = Number of observations in the j t h  sample 

K = Number of sample groups  

 

Given that the size of each sample group is at least 5jn  and the null hypothesis is  true, 

Kazmier (1996) and Siegel (1956) believed that the sampling distribution of H is 

approximately distributed as chi-square with degrees of freedom = k-1 where k is the 

number of sample groups. The chi -square value that approximates the critical value of 

the test statistic is always the upper tail value. This test procedure is analogous to the 

upper tail of the F dis tribution being used in the analysis of variance.  

Kazmier (1996) gave a working formula when there are tied ranks. The test statistic 

should be corrected and the corrected value of the test statistic is design

( )
( )

3

3
1

c

j j

H
H

t t

N N

=
 −

−  
−  



 

 Where jt  represents the number of tied scores in the j t h  sample 

The effect of this correction is to increase the value of the calculated H statistic. Wea  

Hajek (1964) went ahead to observe that rejection of H o  tells you that at least one of the 

K samples is drawn from a population with a median different from the others. But it 

does not tell you which one, or how many are different.  
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Another important suggestion on the use of Kruskal -Wallis one way analysis of variance 

is that it can be used with K independent groups, where 3k  , but however, when 2k =

, you would use the Mann-Whitney–U test instead Hajek, (1964). Also take note that 

because the samples are independent, they can be of different sizes.  

 

Materials Method 

The purpose of any research can be categorized into three groups, Motulsky (2014). It may be to 

compare two independent samples or examine a set of differences. Another may be comparing three or 

more groups. And the third may be to assess the linear association between two variables. From these 

three groups one from each is considered. Those considered are: 

i) the unpaired t-test, to tests the hypothesis that the mean examination scores of ND II Statistics 

students is equal to the mean examination scores of ND I Statistics .The non-parametric 

equivalent is the Mann-Whitney U-test. 

 

Two Sample Data 

In this study, examination scores for the 2005/2006 academic session of the Ramat Polytechnic 

Maiduguri, Borno State were considered. The examination results consist of 40% as continuous 

assessment and 60% as examination score. The performance of National Diploma II Statistics students 

was compared with that of National Diploma I Statistics   students. 

The aim of this experiment is to test hypothesis for difference between mean scores of the two groups 

of students. 

 

Case of Large Samples 

A random sample of 35 out of the 86 students of ND II Statistics was selected and another random sample 

of 33 out of 67 students of ND I Statistics was also selected. Random numbers were used in the selection. 

The performance of each set of students in Business statistics was recorded. 

 

Table 1. The following are the samples taken for both groups: 

Sample A (ND II Statistics) 

38, 43, 63, 64, 45 

41,  55,  56, 47, 51 

40, 49, 67, 51, 57 

70, 52, 49, 49, 47 

44, 46, 47, 57, 37 

45, 37, 66, 18, 51 

49, 51, 65, 52, 55 

 

Sample B (ND1 Statistics) 

54, 34, 43, 65, 30 

50, 40, 70, 49, 28 

48, 76, 40, 44, 56 

45, 50, 53, 57, 48 

60, 63, 61, 51, 40 

43, 49, 41, 58, 70 

64, 58, 45 

 

 

 Case of Small Samples 

A random sample of 17 out of 86 ND II Statistics students and another random sample of 15 

out of 67 students of ND I Statistics were selected. The selection was by using random numbers 
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Table 2. The following are the samples taken for both groups: 

Sample A (ND II Statistics) 

 

57, 68, 75, 41, 47 

22, 49, 67, 37, 55 

63, 65, 60, 18, 44 

73, 53 

Sample B (ND I Statistics) 

 

61, 63, 48, 38, 40 

34, 61, 51, 42, 76 

64, 53, 51, 50, 40 

  

RESULTS AND DISCUSSION 

Results  

Case of Large Samples (Parametric Analysis) 

The application of any parametric test requires certain parametric assumptions. However for a large 

sample i.e. 30n  , the central limit theorem stated that the data set approximates to the standard 

normal variable. Here the appropriate parametric test to use for testing the difference of means will be 

the t-test. Thus without making any assumption the Z statistic gives the same result as the t-statistic.  

The Hypothesis test 0 : A BH  =  against 1 : A BH     

 

The output of two sample t-test using R is given below.  

Variable     N      Mean     StDev   SE Mean         95.0% CI     

x                 35     50.11     10.29      1.74  (   46.58,   53.65) 

y                 33     51.00     11.47      2.00  (   46.93,   55.07) 

Two-sample t test power calculation  

n   = 35 

delta  =  0.89 

sd   =  1 

sig.level  =  0.05 

power  =  0.9563757 

alternative =  two.sided 

The R package consider the two missing values therefore n=35 

 

Case of Large samples (Nonparametric Analysis) 

The same data set used above for the parametric analysis is to be used for non-parametric analysis. Here 

the appropriate corresponding non-parametric test is the Mann-Whitney U test. The non-parametric 

test does not require any parametric assumption.  

The Hypothesis test   

0 1: :A B A BH against H   =   

The output of the Mann Whitney U test using R is given below.  

GrpA       N = 33     Median =      50.000 

GrpB       N = 35     Median =      49.000 

Point estimate for ETA1-ETA2 is      -0.000 

95.0 Percent CI for ETA1-ETA2 is (-5.004, 6.000) 
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W = 1151.5 

Test of ETA1 = ETA2 vs.  ETA1 not = ETA2 is significant at 0.8781 

The test is significant at 0.8780 (adjusted for ties) 

Cannot reject at alpha = 0.05 

The power for adjusted ties is 0 

 

Case of Small Samples (Parametric Analysis) 

The appropriate parametric test to apply is the unpaired t test. Note that the application of any parametric 

test require certain parametric assumptions therefore for the fulfillment of the normality assumption, 

we construct Histogram of the two groups.  

Hypothesis test  

0 1: :A B A BH against H   =   

The output of the sample t-test using R is given below.  

Data:  x by y  

t = 0.2238, df = 28.821, p-value = 0.8245 

Alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 -9.132566 11.375703  

Sample estimates: 

Mean in group 1    mean in group 2  

       52.58824           51.46667  

Two-sample t test power calculation  

              n = 17 

          Delta = 1.12 

             sd = 1 

      sig.level = 0.05 

          Power = 0.8860768 

    Alternative = two.sided 

The R package consider the missing values therefore n=17 

 

Case of Small Samples (Nonparametric Analysis) 

The same data set used above for the parametric analysis (small samples) is to be used for non-parametric 

analysis.  

Here the appropriate corresponding non-parametric test is the Mann-Whitney U test. 

0 1: :A B A BH against H   =   

The output of the Mann Whitney U tests using R given below.  

smpA       N =  15     Median =       51.00 

smpB       N =  17     Median =       55.00 

Point estimate for ETA1-ETA2 is       -3.00 

95.0 Percent CI for ETA1-ETA2 is (-13.00,8.01) 

W = 232.0 
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Test of ETA1 = ETA2  vs  ETA1 not = ETA2 is significant at 0.5711 

The test is significant at 0.5709 (adjusted for ties) 

Cannot reject at alpha = 0.05 

The power for adjusted ties is 0.5709 

 

SUMMARY AND CONCLUSION 

Considering large samples, the parametric t-test generated a power of 95.64%, while the non-parametric 

Mann-Whitney U-test recorded a power of 87.80%. Also looking at the small samples, the parametric 

t-test has a power of 86.61% and the Mann-Whitney U-test with a power of 57.01%. 

The one-way ANOVA has the same power of 85.06% as the non-parametric Kruskal-Wallis when large 

samples are considered. Also on small samples, the two tests generated the same amount of power of 

30.92%. 

In the case of correlation analysis, the parametric Pearson product moment correlation gave a power of 

61.01% and the Spearman rank correlation recorded a power of 60.36%. Considering small samples, 

the parametric tests generated a power of 37.76% and the non-parametric counterpart gave a power of 

19.86%. 

From the above calculations of statistical power, we observe as follows. 

i) When large samples are considered parametric tests has an average power of 80.57% while the 

non-parametric counterpart gave an average power of 77.74%. This shows that parametric tests 

has more power of about 2.83% when large samples are considered. 

ii) When small samples are considered, parametric tests gave an average power of 52.43% while 

the non-parametric counterparts recorded an average power of 35.76% which indicate that 

parametric tests has more power of about 16.67% over the non-parametric tests when small 

samples are considered. 

iii) Considering both large and small samples combined, the parametric tests gave an average power 

of 66.5% while the non-parametric counterparts recorded an average power of 56.85%. This 

shows that on the overall, the parametric test has more power of 9.65% over the non-

parametric tests. 
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