International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2
Published by Cambridge Research and Publications December, 2024

THE IMPACT OF PARALLEL COMPUTING FOR
ENVIROMENTAL DEVELOPMENT

EDINO KENNEDY. O.; & OKORODUDU JOSEPH
Computer Science Department, Delta State Polytechnic, Otefe-
Oghara

Corresponding Author: edinoken007(@gmail.com

ORCID iD: 0009-0001-8457-4620

ABSTRACT

Parallel computing has emerged as a cornerstone of modern computational systems, driven
by the increasing demand for performance and efficiency in applications ranging from
scientific simulations to artificial intelligence (Al). Parallel computing has seen many
changes since the days of the highly expensive and proprietary super computers. Current
research highlights the evolution of parallel processing architectures, with a focus on edge
computing, where data is processed closer to its source to reduce latency and energy
consumption, But these computer environments may not be the most cost effective and
flexible solution for a problem. Over the past decade, parallel technologies have been
developed that allow multiple low cost computers to work in a coordinated fashion to
process applications. The economics, performance and flexibility of parallel computing ers
makes computing an attractive alternative to centralized computing models and the

attendant to cost, inflexibility, and scalability issues inherent to these models.

Keywords: Parallel, Artificial Intelligence, Edge Computing, Flexibility, Scalability

INTRODUCTION

Parallel computing is best characterized as the integration of a number of off-the-shelf
commodity computers and resources integrated through hardware, networks, and
software to behave as a single computer. Initially, the terms parallel computing and high
performance computing were viewed as one and the same Abadi, M., et al. (2020).
"TensorFlow: A system for large-scale machine learning.". However, the technologies
available today have redefined the term parallel computing to extend beyond parallel
computing to incorporate load-balancing parallels (for example, web parallels) and high

availability parallels. Parallels may also be deployed to address load balancing, parallel

172 IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529


mailto:edinoken007@gmail.com

International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2
Published by Cambridge Research and Publications December, 2024

processing, systems management, and scalability. Today, parallels are made up of
commodity computers usually restricted to a single switch or group of interconnected
switches operating at Layer 2 and within a single virtual local-area network (VLAN). Each
compute node (computer) may have different characteristics such as single processor or
symmetric multiprocessor design, and access to various types of storage devices. The
underlying network is a dedicated network made up of high-speed, low-latency switches
that may be of a single switch or a hierarchy of multiple switches.

A growing range of possibilities exists for a parallel interconnection technology. Different
variables will determine the network hardware for the parallel. Price-perport, bandwidth,
latency, and throughput are key variables. The choice of network technology depends on a
number of factors, including price, performance, and compatibility with other parallel
hardware and system software as well as communication characteristics of the applications
that will use the parallel. Parallels are not commodities in themselves, although they may
be based on commodity hardware Blelloch, G. E. (2022). "Programming parallel
algorithms." Communications of the ACM. A number of decisions need to be made (for
example, what type of hardware the nodes run on, which interconnect to use, and which
type of switching architecture to build on) before assembling a parallel range. Each
decision will affect the others, and some will probably be dictated by the intended use of
the parallel. Selecting the right parallel elements involves an understanding of the
application and the necessary resources that include, but are not limited to, storage,

throughput, latency, and number of nodes.

PROBLEM STATEMENT

As modern scientific, engineering and modern business applications grow increasingly
data-intensive and computational complex, the limitations of sequential computing have
become a critical bottleneck. Tasks such as simulations, machine learning, big data
analytics, real-time rendering and computational cryptography. This research will bridge
the gap between computational demands and hardware capabilities, paving way for faster

and more efficient and scalable solutions to contemporary challenges.

LITERATURE REVIEW

Parallel Benefits

The main benefits of parallels are scalability, availability, and performance. For scalability,
a parallel uses the combined processing power of compute nodes to run parallel-enabled

applications such as a parallel database server at a higher performance than a single machine

173 IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529



International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2
Published by Cambridge Research and Publications December, 2024

can provide Asanovi€, K., et al. (2019). "The landscape of parallel computing research: A
view from Berkeley." Technical Report, EECS Department, UC Berkeley. Scaling the parallel's
processing power is achieved by simply adding additional nodes to the parallel. Availability
within the parallel is assured as nodes within the parallel provide backup to each other in
the event of a failure. In high-availability parallels, if a node is taken out of service or fails,
the load is transferred to another node (or nodes) within the parallel. To the user, this
operation is transparent as the applications and data running are also available on the
failover nodes. An additional benefit comes with the existence of a single system image and
the ease of manageability of the parallel. From the users perspective the users sees an
application resource as the provider of services and applications. The user does not know
or care if this resource is a single server, a parallel, or even which node within the parallel
is providing services. These benefits map to needs of today's enterprise business,
education, military and scientific community infrastructures. In summary, parallels
provide:
. Scalable capacity for compute, data, and transaction intensive applications,
including support of mixed workloads
. Horizontal and vertical scalability without downtime
. Ability to handle unexpected peaks in workload ¢ Central system management of a
single systems image

. 24 x 7 avaﬂabﬂity.

TYPES OF PARALLEL

There are several types of parallels, each with specific design goals and functionality. These
parallels range from distributed or parallel parallels for computation intensive or data
intensive applications that are used for protein, seismic, or nuclear modeling to simple

load-balanced parallels.

High Availability or Failover Parallels

These parallels are designed to provide uninterrupted availability of data or services
(typically web services) to the end-user community. The purpose of these parallels is to
ensure that a single instance of an application is only ever running on one parallel member
at a time but if and when that parallel member is no longer available, the application will
failover to another parallel member. With a high-availability parallel, nodes can be taken
out-of-service for maintenance or repairs. Additionally, if a node fails, the service can be
restored without affecting the availability of the services provided by the parallel. While

174 IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529



International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2
Published by Cambridge Research and Publications December, 2024

the application will still be available, there will be a performance drop due to the missing
node. High-availability parallels implementations are best for mission-critical applications
or databases, mail, file and print, web, or application servers Borkar, S., & Chien, A. A.
(2021). "The future of microprocessors." Communications of the ACM.Unlike distributed or
parallel processing parallels, high-availability parallels seamlessly and transparently
integrate existing standalone, non-parallel aware applications together into a single virtual
machine necessary to allow the network to effortlessly grow to meet increased business
demands Culler, D. E., Singh, J. P., & Gupta, A. (2018). Parallel Computer Architecture: A
Hardware/ Software Approach. Morgan Kaufmann.

Parallel-Aware and Parallel-Unaware Applications

Parallel-aware applications are designed specifically for use in paralleled environment.
They know about the existence of other nodes and are able to communicate with them.
Paralleled database is one example of such application. Instances of paralleled database run
in different nodes and have to notify other instances if they need to lock or modify some
data. Parallel-unaware applications do not know if they are running in a parallel or on a
single node

Culler, D. E., Singh, J. P., & Gupta, A. (2018). The existence of a parallel is completely
transparent for such applications, and some additional software is usually needed to set up
a parallel. A web server is a typical parallel-unaware application. All servers in the parallel
have the same content, and the client does not care from which server the server provides

the requested content.

Load Balancing Parallel

This type of parallel dis tributes incoming requests for resources or content among
multiple nodes running the same programs or having the same content. Every node in the
parallel is able to handle requests for the same content or application. If a node fails,
requests are redistributed between the remaining available nodes. This type of distribution
is typically seen in a web-hosting environment Dean, J., & Ghemawat, S. (2023). Both the
high availability and load-balancing parallel technologies can be combined to increase the
reliability, availability, and scalability of application and data resources that are widely

deployed for web, mail, news, or FTP services.

Parallel/Distributed Processing Parallels

75 IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529



International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2
Published by Cambridge Research and Publications December, 2024

Traditionally, parallel processing was performed by multiple processors in a specially
designed parallel computer. These are systems in which multiple processors share a single
memory and bus interface within a single computer. With the advent of high speed, low-
latency switching technology, computers can be interconnected to form a parallel-
processing parallel. These types of parallel increase availability, performance, and
scalability for applications, particularly computationally or data intensive tasks Dongarra,
J., et al. (2020). A parallel 1 is a system that uses a number of nodes to simultaneously
solve a specific computational or data-mining task. Unlike the load balancing or high
availability parallels that distributes requests/tasks to nodes where a node processes the
entire request, a parallel environment will divide the request into multiple sub-tasks that
are distributed to multiple nodes within the parallel for processing. Parallel parallels are
typically used for CPU-intensive analytical applications, such as mathematical
computation, scientific analysis (weather forecasting, seismic analysis, etc.), and financial
data analysis. One of the more common parallel operating systems is the Beowulf class of
parallels. A Beowulf parallel can be defined as a number of systems whose collective
processing capabilities are simultaneously applied to a specific technical, scientific, or

business application.

PARALLEL OPERATION

Parallel Nodes

Node technology has migrated from the conventional tower cases to single rack-unit
multiprocessor systems and blade servers that provide a much higher processor density
within a decreased area. Processor speeds and server architectures have increased in
performance, as well as solutions that provide options for either 32-bit or 64-bit
processors systems. Additionally, memory performance as well as hard-disk access speeds
and storage capacities have also increased. It is interesting to note that even though
performance is growing exponentially in some cases, the cost of these technologies has
dropped considerably. The master node is the unique server in parallel systems. It is
responsible for running the file system and also serves as the key system for paralleling
middleware to route processes, duties, and monitor the health and status of each slave
node. A compute (or slave) node within a parallel provides the parallel a computing and
data storage capability. These nodes are derived from fully operational, standalone
computers that are typically marketed as desktop or server systems that, as such, are off-

the-shelf commodity systems. Flynn, M. J. (2020).

176 IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529



International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2
Published by Cambridge Research and Publications December, 2024

Parallel Network

Commodity parallel solutions are viable today due to a number of factors such as the high
performance commodity servers and the availability of high speed, low-latency network
switch technologies that provide the inter-nodal communications. Commodity parallels
typically incorporate one or more dedicated switches to support communication between
the parallel nodes. The speed and type of node interconnects vary based on the
requirements of the application and organization. With today's low costs per-port for
Gigabit Ethernet switches, adoption of 10-Gigabit Ethernet and the standardization of
10/100/1000 network interfaces on the node hardware, Ethernet continues to be a
leading interconnect technology for many parallels. In addition to Ethernet, alternative
network or interconnect technologies include Myrinet, Quadrics, and Infiniband that
support bandwidths above 1Gbps and end-to-end message latencies below 10

microseconds (uSec), Foster, 1. (2018).

Network Characterization

There are two primary characteristics establishing the operational properties of a network:
bandwidth and delay. Bandwidth is measured in millions of bits per second (Mbps) and/or
billions of bits per-second (Gbps). Peak bandwidth is the maximum amount of data that
can be transferred in a single unit of time through a single connection. Bi-section
bandwidth is the total peak bandwidth that can be passed across a single switch, Grama,
A., Gupta, A., Karypis, G., & Kumar, V. (2023).

Latency is measured in microseconds (uSec) or milliseconds (mSec) and is the time it takes
to move a single packet of information in one port and out of another. For parallel
parallels, latency is measured as the time it takes for a message to be passed from one
processor to another that includes the latency of the interconnecting switch or switches.
The actual latencies observed will vary widely even on a single switch depending on
characteristics such as packet size, switch architecture (centralized versus distributed),
queuing, buffer depths and allocations, and protocol processing at the nodes, Hillis, W.
D., & Steele Jr., G. L. (2019).

Ethernet, Fast Ethernet, Gigabit Ethernet and 10-Gigabit Ethernet

Ethernet is the most widely used interconnect technology for local area networking
(LAN). Ethernet as a technology supports speeds varying from 10Mbps to 10 Gbps and it
is successfully deployed and operational within many high-performance parallel computing

environments, OpenMP Architecture Review Board. (2023).

177 IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529



International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2
Published by Cambridge Research and Publications December, 2024

Parallel Applications

Parallel applications exhibit a wide range of communication behaviors and impose various
requirements on the underlying network. These may be unique to a specific application, or
an application category depending on the requirements of the computational processes.
Some problems require the high bandwidth and low-latency capabilities of today's low-
latency, high throughput switches using 10GbE, Infiniband or Myrinet. Other application
classes perform effectively on commodity parallels and will not push the bounds of the
bandwidth and resources of these same switches. Many applications and the messaging
algorithms used fall in between these two ends of the spectrum. Currently, there are four
primary categories of applications that use parallel parallels: compute intensive, data or
input/output (I/O) intensive, and transaction intensive. Each of these has its own set of
characteristics and associated network requirements. Each has a different impact on the
network as well as how each is impacted by the architectural characteristics of the
underlying network. The following subsections describe each application types, Pacheco,

P. (2021).

Compute Intensive Applications

Compute intensive is a term that applies to any computer application that demands a lot of
computation cycles (for example, scientific applications such as meteorological
prediction). These types of applications are very sensitive to end-to-end message latency.
This latency sensitivity is caused by either the processors having to wait for instruction
messages, or if transmitting results data between nodes takes longer. In general, the more
time spent idle waiting for an instruction or for results data, the longer it takes to
complete the application.

Some compute-intensive applications may also be graphic intensive. Graphic intensive is a
term that applies to any application that demands a lot of computational cycles where the
end result is the delivery of significant information for the development of graphical output
such as ray-tracing applications, Quinn, M. J. (2022).

These types of applications are also sensitive to end-to-end message latency. The longer
the processors have to wait for instruction messages or the longer it takes to send resulting

data, the longer it takes to present the graphical representation of the resulting data.

Data or 170 Intensive Applications

178 IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529



International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2
Published by Cambridge Research and Publications December, 2024

Data intensive is a term that applies to any application that has high demands of attached
storage facilities. Performance of many of these applications is impacted by the quality of
the I/0O mechanisms supported by current parallel architectures, the bandwidth available
for network attached storage, and, in some cases, the performance of the underlying
network components at both Layer 2 and 3.

Data-intensive applications can be found in the area of data mining, image processing, and
genome and protein science applications. The movement to parallel I/O systems continues
to occur to improve the I/O performance for many of these applications, Rauber, T., &
Riinger, G. (2020).

Transaction Intensive Applications

Transaction intensive is a term that applies to any application that has a high-level of
interactive transactions between an application resource and the parallel resources. Many
financial, banking, human resource, and web-based applications fall into this category.
There are three main care abouts for parallel applications: message latency, CPU
utilization, and throughput. Each of these plays an important part in improving or
impeding application performance. This section describes each of these issues and their

associated impact on application performance, Snir, M., et al. (2020).

Message Latency

Message latency is defined as the time it takes to send a zero-length message from one
processor to another (measured in microseconds). The lower the latency for some
application types, the better.

Message latency is made up of aggregate latency incurred at each element within the
parallel network, including within the parallel nodes themselves (see Figure 4.4.1).
Although network latency is often focused on, the protocol processing latency of message
passing interface (MPI) and TCP processes within the host itself are typically larger.
Throughput of today's parallel nodes are impacted by protocol processing, both for
TCP/IP processing and the MPI. To maintain parallel stability, node synchronization, and
data sharing, the parallel uses message passing technologies such as Parallel Virtual
Machine (PVM) or MPI. TCP/IP stack processing is a CPU intensive task that limits
performance within high speed networks. As CPU performance has increased and new
techniques such as TCP offload engines (TOE) have been introduced, PCs are now able to
drive the bandwidth levels higher to a point where we see traffic levels reaching near

theoretical maximum for TCP/IP on Gigabit Ethernet and near bus speeds for PCI-X

179 IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529



International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2
Published by Cambridge Research and Publications December, 2024

based systems when using 10 Gigabit Ethernet. These high—bandwidth capabilities will
continue to grow as processor speeds increase and more vendors build network adapters

to the PCI-Express specification, Sarkar, V., et al. (2021).

CPU Utilization

One important consideration for many enterprises is to use compute resources as
efficiently as possible. As increased number of enterprises move towards realtime and
business-intelligence analysis, using compute resources efficiently is an important metric.
However, in many cases compute resource is underutilized. The more CPU cycles
committed to application processing the less time it takes to run the application.
Unfortunately, although this is a design goal, this is not obtainable as both the application
and protocols compete for CPU cycles.

As the parallel node processes the application, the CPU is dedicated to the application and
protocol processing does not occur. For this to change, the protocol process must
interrupt a uniprocessor machine or request a spin lock for a multiprocessor machine. As
the request is granted, CPU cycles are then applied to the protocol process. As more
cycles are applied to protocol processing, application processing is suspended. In many
environments, the value of the parallel is based on the run-time of the application. The
shorter the time to run, the more floating-point operations and/or millions of instructions

per-second occur, and, therefore, the lower the cost of running a specific application or

job.

180 IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529



International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2
Published by Cambridge Research and Publications December, 2024

Figure 9 CPU Utilization

Application Application

Application l Protocol in
processing wait state

i Application
Protocol in i
T wait state processing
:ﬁ:’ I, ~'-'{;:~, r.,.‘ y
(CPU Utilization)

(Figure- 1) “CPU Utilization analysis in parallel computing” by smith et al., Journal of
Computer Science Vol. 12, No. 4, 2024

The example on the left side of FIGURE1 shows that when there is virtually no network or
protocol processing going on, CPU 0 and 1 of each node are 100% devoted to application
processing. The right side of FIGURE 1 shows that the network traffic levels have
significantly increased. As this happens, the CPU spends cycles processing the MPI and
TCP protocol stacks, including moving data to and from the wire. This results in a reduced
or suspended application processing. With the increase in protocol processing, note that

the utilization percentages of CPU 0 and 1 are dramatically reduced, in some cases to 0.

PERFORMANCE IMPACTS AND CARE ABOUTS

Throughput

Data throughput begins with a calculation of a theoretical maximum throughput and
concludes with effective throughput. The effective throughput available between nodes will
always be less than the theoretical maximum. Throughput for parallel nodes is based on

many factors, including the following:

. Total number of nodes running
o Switch architectures
181

IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529



International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2

Published by Cambridge Research and Publications December, 2024
o Forwarding methodologies
. Queuing methodologies
o Buffering depth and allocations
o Noise and errors on the cable plant

As previously noted, parallel applications exhibit a wide range of communication behaviors
and impose various requirements on the underlying network. These behaviors may be
unique to individual applications and the requirements for interprocessor/inter-nodal
communication. The methods used by the application programmer, as far as the passing of
messages using MPI, vary based on the application requirements. The various MPI

message—method gathering methodologies are show in the figure below.

Slow Start

In the original implementation of TCP, as soon as a connection was established between
two devices, they could each send segments as fast as they liked as long as there was room
in the other device's receive window. In a busy network, the sudden appearance of a large
amount of new traffic could exacerbate any existing congestion.

To alleviate this problem, modern TCP devices are restrained in the rate at which they
initially send segments. Each sender is at first restricted to sending only an amount of data
equal to one “full-sized” segment that is equal to the MSS value for the connection. Each
time an acknowledgment is received, the amount of data the device can send is increased
by the size of another full-sized segment. Thus, the device “starts slow” in terms of how
much data it can send, with the amount it sends increasing until either the full window size
is reached or congestion is detected on the link. In the latter case, the congestion

avoidance feature, described below, is used.

Congestion Avoidance

When potential congestion is detected on a TCP link, a device responds by throttling back
the rate at which it sends segments. A special algorithm is used that allows the device to
drop the rate at which segments are sent quickly when congestion occurs. The device then
uses the Slow Start algorithm, described above, to gradually increase the transmission rate

back up again to try to maximize throughput without congestion occurring again.

182 IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529



International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2
Published by Cambridge Research and Publications December, 2024

In the event of packet drops, TCP retransmission algorithms will engage. Retransmission
timeouts can reach delays of up to 200 milliseconds, thereby significantly impacting

throughput.

METHODOLOGY

In carrying out parallel computing, some methodology are very pertinent which includes
experimenting benchmark to evaluate the performance and the use of standard datasets
and libraries to compare speedup, scalability and efficiency. Simulation and modelling to
model real life situation that requires parallel processing. Algorithm design and analysis to
optimize specific hardware or applications. Comparative analysis of framework is use for
specific tasks. Fault tolerance and reliability testing is sue to ensure reliable parallel

systems .

CONCLUSION

High-performance parallel computing is enabling a new class of computationally intensive
applications that are solving problems that were previously cost prohibitive for many
enterprises. The use of commodity computers collaborating to resolve highly complex,
computationally intensive tasks has broad application across several industry verticals such
as chemistry or biology, quantum physics, petroleum exploration, crash test simulation,
CG rendering, and financial risk analysis. However, parallel computing pushes the limits of
server architectures, computing, and network performance.

Due to the economics of parallel computing and the flexibility and high performance
offered, parallel computing has made its way into the mainstream enterprise data centers
using parallels of various sizes. As parallels become more popular and more pervasive,
careful consideration of the application requirements and what that translates to in terms
of network characteristics becomes critical to the design and delivery of an optimal and
reliable performing solution.

Knowledge of how the application uses the parallel nodes and how the characteristics of
the application impact and are impacted by the underlying network is critically important.
As critical as the selection of the parallel nodes and operating system, so too are the
selection of the node interconnects and underlying parallel network switching
technologies. A scalable and modular networking solution is critical, not only to provide
incremental connectivity but also to provide incremental bandwidth options as the parallel

183 IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529



International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2
Published by Cambridge Research and Publications December, 2024

grows. The ability to use advanced technologies within the same networking platform,
such as 10 Gigabit Ethernet, provides new connectivity options, increases bandwidth,
whilst providing investment protection.

The technologies associated with parallel computing, including host protocol
stackprocessing and interconnect technologies, are rapidly evolving to meet the demands
of current, new, and emerging applications. Much progress has been made in the
development of low-latency switches, protocols, and standards that efficiently and

effectively use network hardware components.

Recommendations

® Select an appropriate parallel programming model based on the problem and

available hardware.

® Breakdown the problem into smaller tasks with balanced workloads across

processors to avoid bottlenecks and ensure efficient parallelism.

® Reduced communication between parallel tasks especially in distributed memory

systems, by optimizing data locality and using efficient message-passing protocols.

o Use dynamic load balancing techniques to distribute tasks among Processors

dynamically, improving resource utilization and performance.

° Regularly test the applications of different hardware to assess its scalability and

identity potential performance bottleneck.

REFERENCES

Abadi, M., etal. (2020). "TensorFlow: A system for large-scale machine learning." OSDI '20.

Asanovi€, K., et al. (2019). "The landscape of parallel computing research: A view from Berkeley."
Technical Report, EECS Department, UC Berkeley.

Blelloch, G. E. (2022). "Programming parallel algorithms." Communications of the ACM.

Borkar, S., & Chien, A. A. (2021). "The future of microprocessors." Communications of the ACM.

Culler, D. E., Singh, J. P., & Gupta, A. (2018). Parallel Computer Architecture: A Hardware/Software Approach.
Morgan Kaufmann.

Dean, J., & Ghemawat, S. (2023). "MapReduce: Simplified data processing on large clusters." OSDI '23.

Dongarra, J., et al. (2020). "The International Exascale Software Project roadmap." International Journal of
High Performance Computing Applications.

Flynn, M. J. (2020). "Some computer organizations and their effectiveness." IEEE Transactions on Computers.

Foster, I. (2018). Designing and Building Parallel Programs. Addison-Wesley.

Ghosh, S. (2019). "Emerging trends in GPU computing for scientific applications." Journal of Parallel and
Distributed Computing.

Grama, A., Gupta, A., Karypis, G., & Kumar, V. (2023). Introduction to Parallel Computing. Addison-
Wesley.

Hillis, W. D., & Steele Jr., G. L. (2019). "Data parallel algorithms." Communications of the ACM.

184 IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529



International Journal of African Reseaarch and Sustainability Studies Vol. 6 No. 2
Published by Cambridge Research and Publications December, 2024

Pacheco, P. (2021). An Introduction to Parallel Programming. Morgan Kaufmann.

Quinn, M. J. (2022). Parallel Programming in C with MPI and OpenMP. McGraw-Hill.

Rauber, T., & Riinger, G. (2020). Parallel Programming: For Multicore and Cluster Systems. Springer.

Snir, M., et al. (2020). "Programming for Exascale Computing Systems." Proceedings of SC '20.

Sarkar, V., et al. (2021). "Habanero-C: A portable programming model for many-cores." Proceedings of the
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming .

185 IJARSS: E-ISSN 3027-2599 P-ISSN 3027-0529



